A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes the process they used and the results they obtained when testing it.
By now, most everyone in the science community is aware of graphene, the single carbon atom layer of material that is being studied to figure out how it can be mass produced and connected to other devices to take advantage of its superior electrical properties. Some have also been looking into whether the material could be made into a superconductor—prior research a decade ago showed that graphite could be made superconductive by coating it with other materials. Since that time, the search has been on to find just the right coating for graphene. Three years ago, a group in Italy created a model that suggested lithium might be the right choice, now, based on the work done by this latest team, it appears that they might have been right.
In this effort, the researches first grew samples of graphene on a silicon-carbide substrate—those samples were then placed in a vacuum and cooled to 8K and were then "decorated" very precisely with a layer of lithium atoms. To convince themselves that the result was superconductive, the team tested the material with angle-resolved photoemission spectroscopy—doing so revealed that electrons sent through the material slowed down, which they suggest was the result of electron-phonon coupling (the creation of Cooper pairs)—one of the hallmarks of a superconductor. The team also identified an energy gap between those electrons that were conducting and those that were not, energy that would be needed to brake electron-phonon coupling.
http://phys.org/news/2015-09-graphene-superconductive-doping-lithium-atoms.html
Мы используем cookie-файлы, чтобы улучшить сервисы для вас. Если ваш возраст менее 13 лет, настроить cookie-файлы должен ваш законный представитель. Больше информации