In September 2016, NASA plans to launch its first-ever asteroid sample return mission loaded with tasks that will help us better understand the composition of asteroids, their origin, and possibly even Earth's origin. The Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-REx) mission designed to study asteroids, which are the leftover debris from the solar system formation process, could teach us a lot about the history of the sun and planets.
The spacecraft, equipped with scientific instruments to map the near-Earth asteroid Bennu and to detect minerals and organic molecules that could be the signs of microbial life, is slated to reach its target in 2018 and return a sample to Earth in 2023. It will bring back at least a 2.1-ounce sample to study.
One of the instruments, the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is designed to measure visible and near infrared light from the asteroid, to identify which chemicals are present on the space rock.
The mission's principal investigator, Dante Lauretta of the University of Arizona, Tucson, and the rest of the team are convinced that OSIRIS-REx will succeed in finding organic materials on Bennu.
Bennu is a carbon-rich asteroid that records the earliest history of our solar system because its composition probably has remained unchanged since it formed some four billion years ago. It could contain natural resources such as water, organics and precious metals—precursors to the origin of life. So could we even find primitive, microbial lifeforms on Bennu?
http://phys.org/news/2015-07-materials-asteroid-bennu-osiris-rex-principal.html
Мы используем cookie-файлы, чтобы улучшить сервисы для вас. Если ваш возраст менее 13 лет, настроить cookie-файлы должен ваш законный представитель. Больше информации