Парадокс всемогущества
Это довольно известный парадокс, который звучит следующим образом: «Попросите всемогущего человека создать камень, который он сам не сможет поднять». Если создать такой камень не получится, значит человек не всемогущ, а если получится — то человек утратит своё всемогущество.
Ответов тут может быть несколько. Возможно, абсолютного всемогущества попросту не существует. Также можно сказать, что всемогущее существо не ограниченно законами логики, поэтому может делать всё, что захочет.
Парадокс черепахи
Этот парадокс был придуман древнегреческим философом Зеноном. Суть его такова: предположим, что Ахиллес бежит в 10 раз быстрее черепахи и находится за 1000 шагов от неё. Пока Ахиллес пробежит 1000 шагов, черепаха проползёт ещё 100 шагов. Когда Ахиллес пробежит 100 шагов, черепаха проползёт ещё 10 шагов, и так до бесконечности. В итоге Ахиллес так и не догонит черепаху. Естественно все мы понимаем, что в реальной жизни он бы её наверняка и догнал, и перегнал.
Парадокс можно объяснить тем, что в реальности пространство и время нельзя делить бесконечно.
Парадокс убитого дедушки
Данный парадокс придумал французский писателеь-фантаст Рене Баржавель. Допустим, что человек создал машину времени, отправился в прошлое и
убил там своего биологического деда в раннем детстве. В итоге один из родителей путешественника не был рождён. Соответственно и сам путешественник тоже не появился на свет. А это значит, что в итоге он не отправился в прошлое и не убил там своего деда и остался жив. Вариантов решения парадокса опять-таки несколько. Может быть, переместиться в прошлое попросту невозможно. А может быть, путешественник просто не сможет его изменить. Также есть мнение, что, отправившись в прошлое, путешественник создаст ещё одну альтернативную реальность, в которой он никогда не будет рождён.
Корабль Тесея
Согласно древнегреческому мифу, жители Афин долгое время хранили корабль, на котором Тесей вернулся с острова Крит. Со временем корабль начал гнить, поэтому в нём постепенно начали менять доски. В определённый момент все доски корабля были заменены на новые. В итоге возник вполне
закономерный вопрос: «Тот ли это ещё корабль или уже совсем другой?» Помимо этого, появился ещё один вопрос: «Если из старых досок собрать ещё один такой-же корабль, то какой из них будет настоящим?»
В современной трактовке этот парадокс звучит так: «Если в исходном объекте заменить постепенно все составные части, останется ли он тем-же объектом?»
Ответ может быть таким: любой предмет может быть «тем-же» количественно и качественно. Это значит, что после смены досок корабль Тесея количественно будет тем-же кораблём, а вот качественно — уже другим.
Парадокс кучи
Предположим, у нас есть куча зёрен. Если из неё убирать по одному зерну, то когда она перестанет быть кучей? будет ли она кучей, если в ней останется только одно зерно? Объясняется парадокс тем, что у термина «куча» нет точного определения.
Парадокс Абилина
Парадокс звучит следующим образом: «В один жаркий вечер некая семья играла на крыльце дома в домино, пока тесть не предложил поехать отдохнуть в Абилин. Поездка обещала быть долгой и утомительной. Тем не менее, жена сразу же согласилась ехать, сказав: «Неплохая идея!» Муж никуда ехать не хотел, однако решил подстроиться под остальных и сказал, что ему эта идея тоже кажется весьма неплохой. Наконец, тёща тоже согласилась на поездку. Дорога до Абилина оказалась весьма утомительной и жаркой, так что отдых не удался. Через несколько часов семья приехала обратно домой. Тёща сказала, что поездка ей не понравилась и поехала она только ради остальных. Муж сказал, что он тоже рад был бы не ехать, но согласился на поездку, чтобы не портить остальным настроение. Жена, в свою очередь, сказала, что и ей никуда не хотелось ехать, она просто хотела подстроиться под всех остальных. Наконец, сам тесть сказал, что предложил поездку только потому, что окружающая обстановка показалась ему скучноватой. Таким образом, никто из них не хотел ехать в Абилин и согласился только ради остальных».
Данный парадокс является типичным примером группового мышления.
Парадокс Греллинга
Разделим все прилагательные на две группы: автологические и гетерологические. Автологические прилагательные — это те, которые характеризуют сами себя. Например, прилагательное «многосложное» является многосложным, а прилагательное «русское» является русским.
Гетерологические прилагательные — это те, которые не характеризуют сами себя. Например, прилагательное «новое» не является новым, а прилагательное «немецкое» не является немецким.
Парадокс возникает в том случае, когда необходимо определить прилагательное «гетерологическое» к одной из двух групп. Если оно характеризует само себя, то является автологическим, а не гетерологическим.
Парадокс мэров
В одной стране вышел указ «Мэры всех городов должны проживать не в своём городе, а специальном городе для мэров». Возникает вопрос: «Где должен жить мэр города мэров?»
Парадокс неожиданной казни
Одному заключённому сказали: «Вас казнят в полдень следующей среды. Это будет неожиданностью для вас.» Заключённый приходит к выводу, что раз он знает точное время казни, то казнь никак не сможет стать для него неожиданной, а значит его не смогут казнить. В полдень следующей среды за ним действительно приходит палач и его казнят. И казнь действительно ставится неожиданностью для заключённого.
Парадокс Эватла
Это древняя логическая задача, суть которой такова: «Некий учитель Протагор взял к себе в ученики Эватла и начал обучать его судебному делу. Эватл пообещал оплатить всё обучение как только выиграет своё первое
дело. Однако после обучения Эватл не спешил работать. Тогда Протагор подал на него в суд. В итоге судья так и не смог вынести какое-либо решение, ведь если Эватл выиграет это дело, то он обязан будет отдать деньги Протагору. Таким образом он на самом деле проиграет, а значит, ему не нужно будет оплачивать свою учёбу Протагору. И так до бесконечности.
Парадокс временной петли
Парадоксы, описывающие путешествия во времени, давно служат источником вдохновения для писателей-фантастов и создателей научно-фантастических фильмов и сериалов. Существует несколько вариантов
парадоксов временной петли, один из самых простых и наглядных примеров подобной проблемы привёл в своей книге «The New Time Travelers» («Новые путешественники во времени») Дэвид Туми, профессор из Университета Массачусетса.
Представьте себе, что путешественник во времени купил в книжном магазине экземпляр шекспировского «Гамлета». Затем он отправился в Англию времён Королевы-девы Елизаветы I и отыскав Уильяма Шекспира, вручил ему книгу. Тот переписал её и издал, как собственное сочинение. Проходят сотни лет,
«Гамлета» переводят на десятки языков, бесконечно переиздают, и одна из копий оказывается в том самом книжном магазине, где путешественник во времени покупает её и отдаёт Шекспиру, а тот снимает копию и так далее… Кого в таком случае нужно считать автором бессмертной трагедии?
Парадокс девочки и мальчика
В теории вероятностей этот парадокс также называют «Дети мистера Смита» или «Проблемы миссис Смит». Впервые он был сформулирован американским математиком Мартином Гарднером в одном из номеров журнала «Scientific American». Учёные спорят над парадоксом уже несколько десятилетий и существует несколько способов его разрешения. Поразмыслив над проблемой, вы можете предложить и свой собственный вариант.
В семье есть двое детей и точно известно, что один из них — мальчик. Какова вероятность того, что второй ребёнок тоже имеет мужской пол? На
первый взгляд, ответ вполне очевиден — 50 на 50, либо он действительно мальчик, либо девочка, шансы должны быть равными. Проблема в том, что для двухдетных семей существует четыре возможных комбинации полов детей — две девочки, два мальчика, старший мальчик и младшая девочка и наоборот — девочка старшего возраста и мальчик младшего. Первую можно исключить, так как один из детей совершенно точно мальчик, но в таком случае остаются три возможных варианта, а не два и вероятность того, что второе чадо тоже мальчик — один шанс из трёх.
Парадокс Журдена с карточкой
Проблему, предложенную британским логиком и математиком Филиппом Журденом в начале XX-го века, можно считать одной из разновидностей
знаменитого парадокса лжеца.
Представьте себе — вы держите в руках открытку, на которой написано: «Утверждение на обратной стороне открытки истинно». Перевернув открытку, вы обнаруживаете фразу «Утверждение на другой стороне ложно». Как вы понимаете, противоречие налицо: если первое утверждение правдиво, то второе тоже соответствует действительности, но в таком случае первое должно оказаться ложным. Если же первая сторона открытки лжива, то фразу на второй также нельзя считать истинной, а это значит, первое утверждение опять-таки становится правдой…
Ещё более интересный вариант парадокса лжеца — в следующем пункте.
Софизм «Крокодил»
На берегу реки стоят мать с ребёнком, вдруг к ним подплывает крокодил и затаскивает ребёнка в воду. Безутешная мать просит вернуть её чадо, на что крокодил отвечает, что согласен отдать его целым и невредимым, если женщина правильно ответит на его вопрос: «Вернёт ли он её ребёнка?». Понятно, что у женщины два варианта ответа — да или нет. Если она утверждает, что крокодил отдаст ей ребёнка, то всё зависит от животного — посчитав ответ правдой, похититель отпустит ребёнка, если же он скажет, что мать ошиблась, то ребёнка ей не видать, согласно всем правилам договора.
Отрицательный ответ женщины всё значительно усложняет — если он оказывается верным, похититель должен выполнить условия сделки и отпустить дитя, но таким образом ответ матери не будет соответствовать действительности.
Чтобы обеспечить лживость такого ответа, крокодилу нужно вернуть ребёнка
матери, но это противоречит договору, ведь её ошибка должна оставить чадо у крокодила.
Стоит отметить, что сделка, предложенная крокодилом, содержит логическое противоречие, поэтому его обещание невыполнимо. Автором этого классического софизма считается оратор, мыслитель и политический деятель
Коракс Сиракузский, живший в V-м веке до нашей эры.
Апория «Дихотомия»
Ещё один парадокс от Зенона Элейского, демонстрирующий некорректность идеализированной математической модели движения. Проблему можно
поставить так — скажем, вы задались целью пройти какую-нибудь улицу вашего города от начала и до конца. Для этого вам необходимо преодолеть первую её половину, затем половину оставшейся половины, далее половину следующего отрезка и так далее. Иначе говоря — вы проходите половину всего расстояния, затем четверть, одну восьмую, одну шестнадцатую — количество уменьшающихся отрезков пути стремится к бесконечности, так как любую оставшуюся часть можно разделить надвое, значит пройти весь путь целиком невозможно. Формулируя несколько надуманный на первый взгляд парадокс, Зенон хотел показать, что математические законы противоречат реальности, ведь на самом деле вы можете без труда пройти всё расстояние без остатка.
Апория «Летящая стрела»
Знаменитый парадокс Зенона Элейского затрагивает глубочайшие противоречия в представлениях учёных о природе движения и времени. Апория сформулирована так: стрела, выпущенная из лука, остаётся неподвижной, так как в любой момент времени она покоится, не совершая перемещения. Если в каждый момент времени стрела покоится, значит она всегда находится в состоянии покоя и не движется вообще, так как нет момента времени, в который стрела перемещается в пространстве.
Выдающиеся умы человечества веками пытаются разрешить парадокс летящей стрелы, однако с логической точки зрения он составлен абсолютно верно. Для его опровержения требуется объяснить, каким образом конечный временной отрезок может состоять из бесконечного числа моментов времени — доказать это не удалось даже Аристотелю, убедительно критиковавшему
апорию Зенона. Аристотель справедливо указывал, что отрезок времени нельзя считать суммой неких неделимых изолированных моментов, однако многие учёные считают, что его подход не отличается глубиной и не опровергает наличие парадокса. Стоит отметить, что постановкой проблемы летящей стрелы Зенон стремился не опровергнуть возможность движения, как таковую, а выявить противоречия в идеалистических математических концепциях.
Парадокс Галилея
В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилео Галилей предложил парадокс, демонстрирующий любопытные свойства бесконечных множеств. Учёный сформулировал два противоречащих друг другу суждения. Первое: есть числа, представляющие собой квадраты других целых чисел, например 1, 9, 16, 25, 36 и так далее. Существуют и другие числа, у которых нет этого свойства — 2, 3, 5, 6, 7, 8, 10 и тому подобные. Таким образом, общее количество точных квадратов и обычных чисел должно быть больше, чем количество только точных квадратов. Второе суждение: для каждого натурального числа найдётся его точный квадрат, а для каждого квадрата существует целый квадратный корень, то есть, количество квадратов равно количеству натуральных чисел.
На основании этого противоречия Галилей сделал вывод, что рассуждения о количестве элементов применены только к конечным множествам, хотя позже математики ввели понятие, мощности множества — с его помощью была доказана верность второго суждения Галилея и для бесконечных множеств.
Парадокс мешка картофеля
Допустим, у некоего фермера имеется мешок картофеля весом ровно 100 кг. Изучив его содержимое, фермер обнаруживает, что мешок хранился в сырости — 99% его массы составляет вода и 1% остальные вещества, содержащиеся в картофеле. Он решает немного высушить картофель, чтобы содержание воды в нём снизилось до 98% и переносит мешок в сухое место. На следующий день оказывается, что, один литр (1 кг) воды действительно испарился, но вес мешка уменьшился со 100 до 50 кг, как такое может быть? Давайте посчитаем — 99% от 100 кг это 99 кг, значит соотношение массы сухого остатка и массы воды изначально было равно 1/99. После сушки вода насчитывает 98% от общей массы мешка, значит соотношение массы сухого остатка к массе воды теперь составляет 1/49. Так как масса остатка не изменилась, оставшаяся вода весит 49 кг.
Конечно, внимательный читатель сразу обнаружит грубейшую математическую ошибку в расчётах — мнимый шуточный «парадокс мешка картофеля» можно считать отличным примером того, как с помощью на первый взгляд «логичных» и «научно подкреплённых» рассуждений можно буквально на пустом месте выстроить теорию, противоречащую здравому смыслу.
Парадокс воронов
Проблема также известна, как парадокс Гемпеля — второе название она получила в честь немецкого математика Карла Густава Гемпеля, автора её классического варианта. Проблема формулируется довольно просто: каждый ворон имеет чёрный цвет. Из этого следует, что всё, что не чёрного цвета, не может быть вороном. Этот закон называется логическая контрапозиция, то есть если некая посылка «А» имеет следствие «Б», то отрицание «Б» равнозначно отрицанию «А». Если человек видит чёрного ворона, это укрепляет его уверенность, что все вороны имеют чёрный окрас, что вполне логично, однако в соответствии с контрапозицией и принципом индукции, закономерно утверждать, что наблюдение предметов не чёрного цвета (скажем, красных яблок) также доказывает, что все вороны окрашены в чёрный цвет. Иными словами — то, что человек живёт в Санкт-Петербурге доказывает, что он живёт не в Москве.
С точки зрения логики парадокс выглядит безукоризненно, однако он противоречит реальной жизни — красные яблоки никоим образом не могут
подтверждать тот факт, что все вороны чёрного цвета.
Доказательство одноцветности всех лошадей
Предположим, доказано, что любые N лошадей одного цвета. Добавим к этим лошадям еще одну лошадь. Количество их станет равным N+1. Удалим
одну произвольную лошадь. Количество их снова станет равным N. Поскольку уже доказано, что любые N лошадей одного цвета, то и полученное множество лошадей будет одного цвета. Перебирая (удаляя) всех лошадей по одной, снова получим N лошадей одного цвета. Таким образом, доказано, что N+1 лошадей тоже одного цвета. Беря N+2, N+3 и т. д. лошадей (и удаляя соответствующее их количество), доказываем, что все лошади одного цвета.
Данное доказательство является софизмом. Ошибка здесь в самом исходном предположении о доказанности, что любые N лошадей одного цвета.
Ведь если в качестве N мы возьмем количество всех лошадей на нашей планете, то сразу же становится ясно, что это доказательство ложное (или вообще не существует), поскольку все лошади нашей планеты не являются одноцветными. Можно, конечно, взять всех лошадей во Вселенной, но ведь еще не факт, что где-то помимо нашей планеты существуют лошади, такие же как на Земле. А если и существуют, то еще не факт, что они имеют те же цвета, что и земные лошади. Тем более, что в качестве N можно взять и всех лошадей во Вселенной…
С другой стороны, если заменить в исходном предположении слово любые на слово некоторые, то такое предположение действительно можно доказать. Но тогда утрачивается смысл только что проведенного доказательства, поскольку оно основано именно на утверждении, что любые N лошадей одного цвета…
Парадокс сатанинской бутылки Стивенсона
Герой, житель Гавайских островов по имени Кэаве, покупает бутылку, в которой живёт чёрт. Условия покупки бутылки таковы: чёрт будет выполнять любые желания хозяина бутылки, но за это последний должен будет после
смерти гореть в аду, если не успеет при жизни её продать, причём по более
низкой цене, чем покупал, то есть с убытком для себя. Другим способом
избавиться от бутылки невозможно, будучи выброшенной, она неведомым образом возвращается к хозяину. Кроме того, исполнение желаний приносит несчастья близким хозяина бутылки — герой пожелал стать богатым, и вскоре после этого умерли его дядя и двоюродный брат, оставив ему большое наследство.
Автор создаёт в сказке парадокс: Какова наименьшая цена, за которую можно продать бутылку? Очевидно, что если купить её по цене, которая по
условию принята минимальной, например, один цент, её уже нельзя будет продать с убытком. Следовательно, её нельзя и продать за один цент, потому что любой покупатель, зная все условия сделки и последствия, которые она влечёт, откажется от покупки, потому что не сможет её перепродать. Точно так же её невозможно продать за два, за три цента, и вообще за любую конечную сумму, поскольку ваш потенциальный покупатель, скорее всего, выразит сомнение в целесообразности такой сделки, имея в виду возможность последующей продажи — он рискует не найти покупателя на бутылку. С другой стороны, если цена на бутылку ещё достаточно высокая, всегда есть шанс найти покупателя на эту бутылку. Но с каждой продажей вероятность найти такого покупателя становится всё меньше, и тем меньше, чем больше убыток, с которым продаётся бутылка.
Если примерить данный парадокс к парадоксу неожиданной казни, то становится ясно, что ответа на поставленный вопрос нет. Для каждого
покупателя бутылки, кроме последнего, ответ на этот вопрос будет зависеть
только от случая. Логически вычислять свои шансы продать бутылку здесь
бессмысленно, как и в парадоксе неожиданной казни.
Решение парадокса: Нужно продать бутылку, за предприятие или бизнес с ежедневным убытком в 1 условную единицу. Тем самым вы причините себе
больше убытка чем последняя цена в задаче.Также можно договорится со родным или знакомым о том что его знакомый возьмет бутылку и продаст обратно главному герою за 2 цента затем друг вернёт герою обратно те 2 цента. в свою очередь главный герой сможет перепродать бутылку за цент.
Парадокс Эпименида
В поэме Эпименид написал: "Критяне - всегда лгут, злые подобно животным и ленивы!". Но Эпименид сам был Критянином. Если Эпименид - лгун, тогда его заявление, "Все критяне всегда лгут", является ложным. А это значит, что все критяне правдивы и заявление Эпименида - правда. Парадокс застрял в бесконечном цикле.
Решение: если Эпименид знал о хотя бы одном критянине (кроме себя), который не является лгуном, то его заявление - ложь (так как он говорил о всех), даже если оно корректно описывает его самого как лгуна.
Парадокс неодолимой силы
Что случится, если неодолимая сила встретит на своем пути недвижимый объект? Если сила сдвинет объект, тогда он не недвижимый. Если сила не справиться, то она не неодолимая.
Решение: эта ситуация никогда не произойдет, так как если есть неодолимая сила, то не может существовать недвижимый объект (обратное тоже верно). Более того - недвижимый объект не может существовать в принципе.
Недвижимый объект должен обладать бесконечной инерцией, а значит бесконечной массой. Бесконечная масса не может существовать в нашей имеющей предел вселенной, а значит, недвижимый объект невозможен.
Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Нет комментариев