Что же мы видим сейчас в реформаторском подходе, основанном на личностно-ориентированном обучении? По каким программам учат сейчас наших детей, в данном случае, математике.
А предлагают (и заставляют всеми доступными средствами) учиться нашим детям именно по таким программам, которые в принципе, на психофизиологическом уровне не могут быть понятны ребенку. В современных пореформенных программах, таких как, например, «Школа 2000...» Л.Г. Петерсон, последние издания Моро М.И. и др. содержание и принципы подачи материала противоестественны для возраста начальной школы.
Эта математическая информация в принципе НЕ МОЖЕТ БЫТЬ ПОНЯТНА ребенку 7 – 10 лет в той последовательности, в том виде, в котором предлагается она ребенку.
Главным «достижением» - именно в кавычках «достижением» современных реформаторов математического образования является введение алгебраического материала и расширенного геометрического материала в курс начальной школы.
И не просто введение в конце, в 4м классе, хотя и это абсолютно бессмысленно и не нужно еще ребенку, а введение этого материала с первого класса, с самых первых дней пребывания первоклашки в школе.
Более того, не просто материала в виде непонятных, отвлеченных, оторванных от практического мира действительности понятий («разность, как выражение» и «разность, как результат», «сумма, как выражение» и «сумма, как результат» вводятся, например, в программе Петерсон Л.Г. еще даже до знакомства с цифрой 1 на 9 и 11 уроках), а вся программа пронизана алгебраическим принципами, основана на абстрактном мышлении.
А абстрактное мышление у ребенка в этом возрасте еще не сформировано! Его нет!
Весь абсурд, вредоносный абсурд программы заключен в этом.
Сразу, заведомо даются знания, которые ребенок не может усвоить и присвоить, понять! Это похоже на издевательство над человеком без рук, которого заставляют писать. Он не может, у него рук нет, а ему говорят – пиши, все могут и ты пиши.
Требовать от первоклашки действительно понимать (а не зазубривать и действовать в рамках шаблона) схемы, буквенные обозначения множеств и тому подобные изыски современных пореформенных программ равнозначно тому, чтобы требовать у ребенка сказать «здравствуйте» акушерке и маме сразу после рождения. А что? Дети же слышат, пока находятся в животе у мамы, так пусть учатся и говорить еще до рождения.
Может быть так рассуждали создатели этих современных программ обучению математики в начальной школе?
К примеру, для того, чтобы научиться говорить: «Здравствуйте!», ребенку нужно, как минимум, научиться дышать, плакать, кричать. Потом ребенок учится гулить, появляется первое «А-гу!», первые звуки, первые слова «Па-па», «ма-ма», «ба-ба» и «де-да», например. Слов становится все больше, появляются первые предложения. А какие это слова? Какие звуки? Сколько времени проходит и должно проходить, пока ребенок научится говорить правильно, произносить правильно! Идет развитие, меняются возрастные особенности, постепенно, последовательно формируется мышление, переходя от одного вида к другому. И так же, в соответствии с психофизиологическими особенностями ребенка и должно строиться обучение.
Традиционная русская методика преподавания арифметики в начальной школе, которая лежит в основе учебника А.С. Пчёлко, переработанного в соответствии с реалиями современной жизни рабочей группой РВС, строится именно с опорой на возрастные особенности ребенка, на ясное понимание и усвоение изучаемого, на развитие понятийного мышления, на решение в комплексе образовательных и воспитательных задач, на связь с практическими знаниями, умениями ребенка.
Методы и приемы преподавания арифметики выбраны такие, которые способствуют всестороннему умственному и нравственному развитию учащихся, которые помогают воспитывать ум, волю, чувства. Развивается логическое мышление – мышление определенное, последовательное, доказательное. Формируется понятийное мышление.
И именно в последовательном, постепенном, с постоянной опорой на предыдущие знания процессе обобщения и абстрагирования в начальной школе закладываются основы отвлеченного, абстрактного мышления. И прочный арифметический фундамент, без полостей непонимания, без трещин незнания ложится в основу алгебраических знаний, задает политехническую основу. Ведь математика – царица наук. Наши детки просто растут умненькими, смышлеными, спокойными и уверенными. И весь океан знаний средней школы для них «по колено».
Создатель учебника, Александр Спиридонович Пчёлко, работал над ним с 1920 года. Самая лучшая программа для младших классов была составлена именно им.
Александр Спиридонович Пчелко был большой знаток истории развития методики арифметики. В 1940 году им была опубликована «Хрестоматия по методике начальной арифметики», которая явилась результатом его исследований трудов русской дореволюционной методической школы. В 1941 году А. С. Пчелко уходит добровольцем в Народное ополчение, но уже в 1944-м защищает кандидатскую диссертацию на тему «Очерки истории развития методики арифметики в XVIII, XIX и начале XX века».
С 1945 по 1964 г. Пчелко А.С. возглавлял сектор начального обучения в НИИ СиМО АПН СССР. В это время он написал одну из своих самых значимых книг: «Методика преподавания арифметики в начальной школе. Пособие для учителей».
А по учебникам арифметики для 1 – 4 классов, авторы Пчелко А., Поляк Г. получали начальное математическое образование миллионы детей в течении 15 лет. И именно этот период, как мы знаем из работ исследователя уровня математического образования в 20 – 21 веке Костенко И. П., дал нашей стране самый высокий уровень знаний выпускников школы.
В общих чертах расскажу именно о сути методики, о том, что лежит в основе учебника Пчёлко А.С., Поляк Г. Б. «Арифметика для 1 класса».
Во-первых, возникает вопрос, почему арифметика, а не математика. Давайте разберемся на очень простом уровне в чем же разница между этими названиями и есть ли она.
Матема́тика (от др.-греч. μάθημα — изучение, наука) — наука о структурах, порядке и отношениях, которая исторически сложилась на основе операций подсчёта, измерения и описания форм реальных объектов. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Математика — фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы.
Математика – более общее понятие по отношению и к арифметике, и к алгебре. Проще говоря, и алгебра, и арифметика входят в состав математики, они – ее части, разделы.
Арифме́тика (др.-греч. ἀριθμητική от ἀριθμός — число) — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа, вопросы о его происхождении, развитии (натуральные, целые и рациональные, действительные, комплексные числа) и свойствах, измерения, вычислительные операции (сложение, вычитание, умножение, деление) и приёмы вычислений. Изучением индивидуальных свойств целых чисел занимается высшая арифметика, или теория чисел. Теоретическая арифметика служит для определения и анализа понятия числа, в то время как формальная арифметика оперирует логическими построениями предикатов и аксиом. Арифметика является одной из основных математических наук, она тесно связана с алгеброй, геометрией и теорией чисел.
А́лгебра (от араб. الجبر, «аль-джабр» — восполнение) — раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово «алгебра» также употребляется в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множества произвольной природы, обобщающий обычные операции сложения и умножения чисел. Алгебра — это наука, изучающая алгебраические системы с точностью до изоморфизма.
Даже из определений понятий «математика», «арифметика», «алгебра» видно, что: - арифметика и алгебра это части математики; - арифметика лежит в основе алгебры, алгебра – это «расширение» арифметики.
Так зачем же до полного изучения арифметики давать детям алгебраические знания, как делается это в современных программах «а-ля 21 век»? Зачем давать их параллельно с изучением арифметики с первого класса? Особенно, если учесть то, что они в принципе, в связи с физиологическими особенностями ребенка не могут быть усвоены нормально, поняты первоклашкой (как минимум).
Представьте себе, что вы приходите в секцию по фигурному катанию для начинающих. Вам 7 лет. Вы волнуетесь. До этого вы видели коньки, видели, как другие катаются по льду, видели выступление по телевизору профессиональных фигуристов. Может быть даже несколько раз с родителями катались на катке, а может быть и нет. С надеждой и волнением Вы (а Вам 7 лет, не забывайте) смотрите на тренера. Одеваете с помощью мамы или бабушки форму, шнуруете коньки, с поддержкой, стараясь не упасть и не расплакаться подходите к дверце катка, тренер приветливо открывает вам ее и…
Вместо того, чтобы учить делать первые шаги на льду, первые скольжения, первые безопасные падения и подставлять уверенную руку для опоры, помогая вставать, тренер с голливудской улыбкой широко обводит красочный каток рукой и говорит: «Рада приветствовать Вас на нашем катке! Здесь Вы научитесь фигурному катанию и, если будете стараться, станете олимпийскими чемпионами, дорогие дети! Вперед, делайте сальхов, риттбергер и аксель, тулуп, флип и лутц, а если возникнут вопросы – спрашивайте у своих родителей, тренируйтесь дома, добывайте информацию в сети Интернет. Родители, помните, вы ответственны за будущее своих детей! Не устраняйтесь от воспитания и обучения, обязательно занимайтесь с детьми дома дополнительно, помогайте им во всем. А сейчас я покажу вам, как надо делать сальхов и аксель, далее объединяйтесь в группы и учите делать их друг друга. Если у Вас возникнут трудности и Вам будет одиноко, опытные психологи и социальные педагоги нашего учреждения помогут Вам!»
Вот так же и с современными программами по математике, вместо того, чтобы учить детей «к одному прибавлять один», детей учат с первых уроков, еще до знакомства с цифрами таким понятиям, как «сравнение групп предметов, сумма (выражение) и сумма (результат), разность (выражение) и разность (результат)». А для связи с реальностью предлагают в учебнике (он же тетрадь) решить примеры: С О Н = или ≠ Н О С, ЛАПТА – ЛАПА = ?, знакомят с формулой Т + К = К + Т.
Это сентябрь первого класса.
Нет комментариев