Одним из преимуществ модульных устройств является возможность масштабировать систему, подбирая необходимое для подключения полевых устройств количество каналов. Помимо этого, модульные устройства позволяют создавать гибкие структуры. В одном распределительном шкафу можно комбинировать модули защиты сегмента и полевые барьеры, то есть подключать от одного шкафа полевые устройства, расположенные в разных зонах взрывоопасности. Всего на одну шину можно установить до 12 двухканальных модулей FB-2SP или одноканальных модулей барьеров FB-ISO, подключая таким образом от одного шкафа до 24 полевых устройств в Зоне 2 или до 12 датчиков в Зоне 1 или 0.
Устройства сопряжения могут эксплуатироваться в широком температурном диапазоне и устанавливаются во взрывозащищенных оболочках Ex e, Ex d со степенью пылевлагозащиты не менее IP54, в том числе максимально близко к объекту управления.
Устройства защиты от импульсных перенапряжений
Сети полевого уровня Н1 могут образовывать очень протяженные сегменты, а линии связи могут проходить в местах, где возможно образование импульсных перенапряжений. Под импульсными перенапряжениями понимают наведенную разность потенциалов, вызванную грозовыми разрядами или короткими замыканиями в близлежащих кабельных линиях. Наведенное напряжение, величина которого составляет порядка нескольких киловольт, вызывает протекание разрядных токов величиной в килоамперы. Все эти явления происходят в течение микросекунд, но могут привезти к выходу из строя компонентов сети Н1. Для защиты оборудования от подобных явлений необходимо использовать УЗИП. Применение УЗИП вместо обычных проходных клемм гарантирует надежную и безопасную работу системы в неблагоприятных условиях.
Принцип его действия основан на использовании квазикороткого замыкания в наносекундном диапазоне для протекания разрядных токов в контуре, в котором используются элементы, способные выдержать протекание токов такой величины.
Существует большое количество разновидностей УЗИП: одноканальные, двуканальные, со сменными штекерами, с различными типами диагностики – в виде блинкера, сухого контакта. Современные средства диагностики от Phoenix Contact позволяют осуществлять мониторинг УЗИП с использованием цифровых сервисов на основе Ethernet. На заводе компании в России выпускаются устройства, сертифицированные для применения во взрывоопасных средах, в том числе в системах Foundation Fieldbus.
Терминатор шины
Терминатор выполняет в сети две функции – шунтирует ток полевой шины, который возникает вследствие модулирования сигнала и препятствует отражению сигнала от концов магистральной линии, предотвращая таким образом появление шумов и джиттера (фазового дрожания цифрового сигнала). Таким образом, терминатор позволяет избежать появление неточных данных в сети или потерю данных совсем.
В каждом сегменте сети H1 обязательно наличие двух терминаторов, на каждом из концов сегмента. Источники питания шины и устройства сопряжения Phoenix Contact комплектуются отключаемыми терминаторами. Наличие лишних терминаторов в сети, например, вследствие ошибки будет значительно снижать уровень сигнала в интерфейсной линии.
Информационный обмен между сегментами
Информационный обмен между полевыми устройствами не ограничивается одним сегментом, а возможен между различными участками сети, которые могут быть связаны через контроллер или сеть предприятия на основе Ethernet. При этом может быть использован протокол Foundation Fieldbus HSE или более популярный, например, Modbus TCP.
При построении сети HSE применяются коммутаторы промышленного исполнения. Протокол допускает кольцевое резервирование. В этом случае стоит помнить, что в кольцевой топологии коммутаторы должны использовать один из протоколов резервирования (RSTP, MRP или Extended Ring Redundancy) в зависимости от величины и требуемого времени сходимости сети при обрыве каналов связи.
Интеграция систем на основе HSE со сторонними системами возможна с применением технологии ОРС.
Методы обеспечения взрывобезопасности
Для создания взрывобезопасной системы недостаточно руководствоваться только лишь характеристиками взрывобезопасности оборудования и выбором его правильного расположения на объекте. В рамках системы каждое из устройств не функционирует само по себе, а работает в рамках единой сети. В сетях Foundation Fieldbus H1 информационный обмен между устройствами, расположенными в разных зонах взрывоопасности, связан не только с передачей данных, но и с передачей электрической энергии. Величина энергии, которая была допустима в одной зоне, может быть неприемлема в другой. Поэтому для оценки взрывобезопасности полевых сетей и выбора оптимального метода ее обеспечения используют системный подход. Среди таких методов наибольшее распространение получили методы обеспечения искробезопасности.
Применительно к полевым шинам в настоящий момент существует несколько способов обеспечения искробезопасности: традиционный метод барьеров искрозащиты, концепция FISCO и технология High Power Trunk (HPT).
Первый из них основан на использовании барьеров искрозащиты и реализует опробованную концепцию, которая использовалась в системах управления на основе аналоговых сигналов 4-20 мА. Этот метод прост и надежен, однако ограничивает питание полевых устройств во взрывоопасных Зонах 0 и 1 80 мА. В этом случае по оптимистичному прогнозу возможно подключить не более 4 полевых устройств на сегмент с потреблением 20 мА, но на практике не более 2. В этом случае система теряет все преимущества, которые существуют в Foundation Fieldbus, и фактически приводит к топологии точка-точка, когда для подключения большого числа полевых устройств систему необходимо разбивать на множество сегментов. Также этот метод значительно ограничивает длину магистрального кабеля и ответвлений.
Концепция FISCO была разработана «Национальным метрологическим институтом Германии» и позже вошла в стандарты МЭК, а затем и в ГОСТ. Для гарантии искробезопасности полевой сети концепция подразумевает использование компонентов, удовлетворяющих определенным ограничениям. Подобные ограничения формулируются для источников питания по выходной мощности, для полевых устройств по потребляемой мощности и индуктивности, для кабелей по сопротивлению, емкости и индуктивности. Подобные ограничения связаны с тем, что емкостные и индуктивные элементы могут накапливать в себе энергию, которая в аварийном режиме, в случае повреждения какого-либо элемента системы, может высвободиться и стать причиной искрового разряда. Кроме того, концепция запрещает использование резервирования в системе питания шины.
FISCO дает большую величину тока для питания устройств во взрывоопасной зоне по сравнению с методом полевых барьеров. Здесь доступно 115 мА, что возможно использовать для питания 4-5 устройств в сегменте. Однако здесь также существуют ограничения по длине магистрального кабеля и ответвлений.
Технология High Power Trunk в настоящий момент является наиболее распространенной технологией обеспечения искробезопасности в сетях Foundation Fieldbus, потому что лишена недостатков, которые существуют в сетях, защищенных барьерами или построенными согласно FISCO. С использованием HPT стало возможно добиться предельного значения полевых устройств в сегменте сети.
Нет комментариев