Во-вторых, в ней не объяснялось, почему сила гравитации объекта пропорциональна его инерционной массе. Другими словами, она не объясняет, почему гравитационное ускорение не зависит от массы или состава объекта.
В-третьих, она постулирует наличие мгновенной силы гравитационного притяжения, то есть мгновенной передачи информации о местоположении одного объекта другому объекту за счёт изменения силы гравитации. То есть допускает передачу информации со скоростью, превышающей скорость света.
Эти три проблемы, вместе взятые, привели Эйнштейна к иному представлению о гравитации: вместо постулирования наличия невидимой, бесконечно быстро действующей силы, которая действует на всех расстояниях и во все времена, гравитацию можно объяснить просто искривлением пространства-времени, которое в свою очередь диктуется наличием в нём материи и энергии.
Суть теорий Эйнштейна, устранивших вышеперечисленные проблемы и в то же время радикально изменивших представления физиков о Вселенной, состоит в том, что:
- Пространство-время не является неизменной и постоянной «сценой», на которой происходят события. У него есть своя форма и структура, на которые влияет вещественно-энергетическое содержание Вселенной.
- Материя и энергия указывают пространству-времени, как искривляться.
- Пространство-время указывает материи, как двигаться. В частности, малые объекты движутся по самым прямым линиям в искривлённом пространстве-времени.
В искривлённом пространстве изменяются правила евклидовой геометрии. Параллельные прямые могут пересекаться, а сумма углов в треугольнике может быть больше или меньше 180 градусов — в зависимости от того, как искривлено пространство (именно об этом идёт речь при подсчёте кривизны Вселенной).
Теория Эйнштейна дала правильное предсказание смещения перигелия Меркурия. Она также объяснила, почему объекты падают одинаково независимо от их массы: все они движутся по одной и той же прямой линии в искривлённом пространстве-времени. Наконец, в теории Эйнштейна мгновенная гравитационная сила заменяется кривизной пространства-времени. Перемещение массы приводит к образованию пульсаций в этой кривизне (гравитационных волн), которые распространяются со скоростью, равной скорости света. Таким образом, удалённая масса не ощущает мгновенного изменения гравитационной силы, и специальная теория относительности не нарушается.
Пытаясь объяснить расхождения теории Ньютона с реальностью, Эйнштейн в начале XX века сначала выдвинул и обосновал СТО, а потом у него в голове сложились три части головоломки, породившие общую теорию относительности (ОТО):
- Специальная теория относительности, или представление о том, что каждый уникальный наблюдатель имеет своё собственное уникальное — но взаимно согласованное между наблюдателями — представление о пространстве и времени, включая расстояние между объектами, продолжительность и порядок событий.
- Переформулировка таких понятий, как пространство и время, проведённая Минковским. Он объединил их в единую четырёхмерную ткань, называемую пространством-временем, на фоне которой движутся и эволюционируют все другие объекты и наблюдатели.
- И принцип эквивалентности, который Эйнштейн неоднократно называл своей «самой счастливой мыслью» и который заключался в том, что наблюдатель в герметичной комнате, ускоряющийся из-за того, что он находится в гравитационном поле, не почувствует никакого отличия от такого же наблюдателя в такой же комнате, ускоряющегося из-за наличия тяги (или внешней силы), вызывающей это ускорение.
В опубликованной в 1915 году ОТО Эйнштейн упомянул три необходимых и достаточных эксперимента, результаты которых по-разному описывали релятивистские предсказания и ньютоновская теория для плоского пространства-времени. В порядке, представленном Эйнштейном, это были следующие измерения. Первое — измерение скорости прецессии орбиты планеты Меркурий вокруг Солнца (дополнительно 43" в столетие, тогдашние наблюдения требовали 45±5" в столетие). Второе — предсказанная амплитуда изгиба светового луча от фоновой звезды, проходящей мимо Солнца (1,75" на лимбе Солнца). Третье — гравитационное красное смещение света для частицы, движущейся через гравитационный потенциал; последнее было однозначно определено только в 1960-х годах.
Предсказанная в рамках общей теории относительности амплитуда отклонения света на лимбе Солнца составляет 1,75", причём отклонение происходит в радиальном направлении от центра Солнца и линейно уменьшается с расстоянием. Предсказанное изгибание света в теории, в которой свет реагирует на гравитацию (действует принцип эквивалентности), но пространство-время не искривляется, составляет ровно половину от этого значения: 0,87". Эта модель в то время называлась ньютоновским предсказанием. Рассматривалась и третья возможность — нулевое отклонение.
В связи с этим несколько обсерваторий, специализирующихся на солнечных затмениях, пересматривали исторические фотоматериалы и/или организовывали специальные экспедиции на затмения в 1912, 1914 и 1918 годах. Ни одной из них не удалось получить нужных результатов. Следующее доступное затмение, 29 мая 1919 года, было исключительным в том отношении, что полное затмение должно было длиться относительно долго, а на фоне оказывалось звёздное скопление Гиады, обладающее исключительным количеством и пространственным распределением ярких звёзд. Королевский астроном сэр Фрэнк Дайсон признал, что это беспрецедентная возможность для проверки отклонения света от прямого пути, и поддержал организацию специальной экспедиции, которая «должна послужить для всесторонней проверки или опровержения теории Эйнштейна».
Нет комментариев