Можно ли потратить 1 кВт⋅ч электроэнергии, а взамен получить 3-4 кВт⋅ч тепла для отопления и горячего водоснабжения загородного дома? И платить по счетчику только за 1 кВт⋅ч, беспечно обогревая площадь в 30-40 кв. м? Да! Современные технологии творят чудеса. Именно о такой новаторской системе получения теплой воды мы сегодня и поговорим.
Затратив на входе 1 кВт⋅ч, на выходе она действительно дарит вам в 3-4 раза больше тепла. Причем дарит в прямом смысле: казалось бы, ниоткуда, «из воздуха» появляется дополнительная энергия, которая материализуется в комфортном и теплом отдельно стоящем доме. В этом и есть главный плюс чуда техники под названием «теплонасосные системы», а сокращенно — «тепловые насосы».
Разумеется, за таким четырехкратным экономическим эффектом стоят и самые современные технологии, и серьезная наука. Поэтому не судите строго за вынужденную сухость и «технократичность» изложения.
Как это работает
Всезнающая «Википедия» определяет тепловой насос как устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой.
По сути, тепловой насос аналогичен бытовому холодильнику, о сложной работе которого мы попросту не задумываемся. Только там основная цель — производство холода: испаритель забирает тепло из камеры холодильника, а конденсатор «сбрасывает» его в окружающую среду. В тепловом насосе картина строго обратная.
Конструкция теплового насоса — это замкнутая система, в которую входят:
испаритель,
компрессор,
конденсатор,
расширительный клапан (дроссель).
Они соединены трубопроводами, по которым циркулирует хладагент (фреон). Но сам тепловой насос как таковой — лишь часть теплонасосной системы отопления. Его испаритель непосредственно связан с первым контуром системы — зарытым в грунт теплообменником, который передает низкопотенциальную энергию грунта хладагенту (второй контур).
Получая тепловую энергию грунта из первого контура, хладагент нагревается, вскипает и переходит из жидкого состояния в газообразное (испаряется).
Компрессор сжимает нагретый газообразный хладагент, при этом его температура повышается. Кстати, именно на работу компрессора в основном и уходит вся потребляемая из сети электроэнергия — тот самый условный 1 кВт⋅ч, о котором шла речь в начале статьи.
Из компрессора подогретый фреон попадает в конденсатор. Здесь он охлаждается, отдавая свое тепло в контур системы водяного отопления дома (третий контур).
Выходя из дросселя, фреон расширяется, его температура падает, в результате он переходит в жидкую фазу и возвращается в испаритель.
После этого рабочий цикл повторяется заново. Типичный бытовой холодильник, только работающий «в обратную сторону».
Типы тепловых насосных систем
Исследователи и конструкторы теплонасосных установок разработали несколько вариантов отбора тепла у природы: из грунта, из воды и даже из воздуха. Практический интерес для российских дачников представляет случай съема тепла из грунта — прямо из земли садового участка.
При этом тепловая энергия грунта отбирается теплоносителем (обычно это незамерзающая жидкость на основе пропиленгликоля или этиленгликоля) первого контура. Известны два типа грунтовых теплообменников: горизонтальный коллектор и геотермальный зонд.
Горизонтальный грунтовый коллектор
Это система труб, уложенных на глубине ниже уровня промерзания (то есть около 2 м) в специально вырытые траншеи. Трубы могут соединяться последовательно или параллельно, располагаться в одной плоскости или даже образовывать пространственную спираль.
Параметры такого теплообменника зависят от длины труб, которую рассчитывают исходя из:
потребной мощности насоса,
грунта данного места (влажный — лучше),
уровня солнечной радиации и т.д.
В любом случае площадь, занимаемая таким коллектором, сравнительно велика. В средней полосе России примерное значение тепловой мощности, приходящейся на 1 погонный метр трубы теплообменника, составляет 20-30 Вт. Это означает, что для обеспечения теплом коттеджа площадью около 50 кв. м потребуется коллектор площадью 150-200 кв.м.
На площадке, под которой располагается коллектор, можно сажать кусты и деревья, устанавливать малые архитектурные формы (беседки, перголы и арки, садовые скульптуры, стационарные садовые светильники и т.д.). Но какая-либо серьезная застройка там запрещена. Такой запрет позволяет тепловым «запасам» грунта, остывшего за зиму, восстанавливаться естественным путем. А это происходит в том числе за счет летних дождей. Поэтому ничто не должно препятствовать проникновению влаги в почву. Так что «энергетическое поле» вашего участка будет представлять собой только садово-огородный ландшафт, даже без теплиц.
Вертикальный коллектор, или геотермальный зонд
Вертикальный коллектор — другой тип грунтового теплообменника. Он представляет собой вертикальную скважину глубиной 30-100 м (иногда и более), в которой размещается U-образный или коаксиальный (труба в трубе) теплообменник.
У него есть и другое название — геотермальный зонд.
Важнейшее преимущество вертикальных грунтовых теплообменников — в том, что для их устройства требуется минимальная площадь.
Продолжение статьи читайте на нашем сайте: http://www.7dach.ru/Oleg_Sanko/teplovoy-nasos-na-dache-vygody-i-problemy-41534.html?utm_source=ok_7dach&utm_campaign=actual&utm_medium=social
Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Комментарии 2