Работу нейросетей ускорили для моделирования молекул лекарств
Такие подходы можно интегрировать в GFlowNets без внесения существенных серьезных модификаций и изменений для повышения эффективности обучения и работы этих алгоритмов, отметили ученые
Российские исследователи выяснили, что скорость и эффективность работы так называемых генеративных потоковых сетей (GFlowNets), способных ускорять разработку новых лекарств и решать задачи комбинаторной оптимизации, можно значительным образом повысить, если применять для их настройки классические алгоритмы обучения с подкреплением. Об этом сообщила пресс-служба НИУ ВШЭ.
"Мы показали, что классические алгоритмы обучения с подкреплением работают сравнимо и даже эффективнее известных современных подходов, разработанных специально для обучения этих моделей. Так, в рамках задачи моделирования молекул лекарств с заданными свойствами за время обучения нашего метода было сгенерировано на 30% больше высококачественных молекул, чем у существующих методов", - пояснил научный руководитель Центра искусственного интеллекта НИУ ВШЭ Алексей Наумов, чьи слова приводит пресс-служба вуза.
Как объясняют ученые, так называемые генеративные потоковые сети представляют собой особый класс методов машинного обучения, который используется при обучении языковых моделей, решении задач комбинаторной оптимизации, при моделировании молекул лекарств с заданными свойствами и для решения других сложных задач.
"Устройство этих моделей можно описать на примере конструктора лего. По недостроенному объекту и набору доступных деталей система будет пытаться предсказать, куда и с какой вероятностью нужно добавить деталь, чтобы мы могли с большой вероятностью собрать хороший макет машины или корабля", - пояснил научный сотрудник Института искусственного интеллекта и цифровых наук НИУ ВШЭ Никита Морозов, чьи слова приводит пресс-служба вуза.
Мы используем cookie-файлы, чтобы улучшить сервисы для вас. Если ваш возраст менее 13 лет, настроить cookie-файлы должен ваш законный представитель. Больше информации
Нет комментариев