Входной сигнал поступает через конденсатор C12, от величины емкости которого, зависит нижняя граничная частота рабочего частотного диапазона усилителя. В показанной схеме, нижняя граничная частота диапазона - 1,8 Гц (по уровню -3 дБ, относительно 1 кГц). Далее по схеме следует RC-фильтр на элементах R19 и C7, который защищает вход усилителя от радиочастотных сигналов и помех. Частота среза данного фильтра - 220 кГц (по уровню -3 дБ, относительно 1 кГц). Коэффициент усиления всего усилителя определяется по следующей формуле: Kу=(R7+R1)/(R17+R19)=(1+120)/(3+1)=30,25. При данном значение коэффициента усиления, для достижения выходной мощности 100 Вт на нагрузке 4 Ом, на вход усилителя необходимо подать сигнал с действующим значением напряжения - 0,66 В. Величина несущей частоты, в первую очередь зависит от элементов C10, C11, R14, R1, R7, С2, а также выбранной продолжительности мертвого времени и коэффициента заполнения: значение несущей частоты максимально на холостом ходу (когда коэффициент заполнения близок к 50%), и падает пропорционально снижению коэффициента заполнения. В меньшей степени, значение несущей частоты зависит от номиналов R19, R17, C8, а также от изменения напряжения на шинах питания аналоговой части, быстродействия выбранных ключевых транзисторов. Говоря кратко - на значение несущей частоты, в разной степени, влияют почти все элементы схемы. Резистор R14 - подстроечный, с его помощью, без изменения других элементов схемы, можно регулировать значение несущей частоты в широких пределах (чем больше сопротивление - тем выше несущая частота). В авторском варианте усилителя, значение несущей частоты выбрано равным 375 кГц, хотя усилитель без проблем работал даже при значении несущей частоты 500 кГц. При первом включении, положение движка подстроечного резистора R14 должно находиться в среднем положении. Конденсатор C15 задает время отключения.
Стабилитроны D1 и D7 определяют величину напряжения питания аналоговой части равное - 5,6 В. Цепочки резисторов R3-6, R8, R9 и R39-44 - это гасящие резисторы для шин питания аналоговой части. Номиналы данных резисторов выбираются таким образом, чтобы при заданном значении напряжения питания усилителя, обеспечить аналоговую часть током: не менее 11 мА (при минимальном напряжении питания усилителя), и не боле 20 мА (при максимальном напряжении питания усилителя). Рассеиваемая на каждом из резисторов мощность не должна превышать 250 мВт (лучше - не более 200 мВт).
Результирующее сопротивление гасящих резисторов питания аналоговой части рассчитывается по следующей формуле:
R = (Uпит_мин - Uпит_аналог) / Iпит_аналог
Где, Uпит_мин - минимальное напряжение питания усилителя (одного плеча), с учетом просадки питающего напряжения под нагрузкой и в следствии колебания сетевого напряжения. Uпит_мин - обычно на 5-10 В ниже, чем напряжение питания на холостом ходу (без сигнала);
Uпит_аналог - напряжение питания аналоговой части (одного плеча). Равно напряжению стабилизации стабилитронов D1 и D7 (5,6 В);
Iпит_аналог - ток питания аналоговой части (одного плеча).
Теперь, чтобы найти необходимое значение сопротивления для каждого из резисторов, необходимо полученное результирующее значение умножить на 1,5 (для положительного плеча) или разделить на 1,5 (для отрицательного плеча).
На примере авторской схемы. Минимальное напряжение питания 32 В, напряжение стабилизации стабилитронов питания аналоговой части - 5,6 В, ток питания аналоговой части примем равным - 12 мА, результирующее сопротивление гасящих резисторов: R=(32-5,6)/0,012=2200 Ом. Соответственно, в положительном плече, сопротивление каждого из резисторов - 2200*1,5=3300 Ом, а в отрицательном плече - 2200/1,5=1466 Ом (выбираем ближайший существующий номинал - 1,5 кОм).
На транзисторе Q2 и его обвязке, построен линейный стабилизатор напряжения для питания микросхемы и ее встроенного драйвера. Транзистор Q2 в процессе работы достаточно сильно нагревается и поэтому в обязательном порядке должен быть установлен на радиатор. Выходное напряжение данного стабилизатора задается с помощью стабилитрона D5 включенного в базу транзистора Q2. Однако, выходное напряжение стабилизатора не равно напряжению стабилизации данного стабилитрона - оно будет меньше приблизительно на 0,6 В. Резистор R27 задает ток через стабилитрон D5, он выбирается таким образом, чтобы обеспечить оптимальное значение тока через стабилитрон, которое должно быть в районе 3 мА.
Id5 = Uпит_мин/R27
Где, Id5 - ток через стабилитрон D5;
В авторском варианте: Id5 = 32/12000 = 0,002666 А = 2,6 мА.
Конденсаторы C18 и C13 сглаживают пульсации на входе и на выходе стабилизатора напряжения, соответственно.
Диод D3 - бустрепный, через который обеспечивается питание драйвера верхнего уровня. К этому диоду предъявляются особые требования. Самое главное требование: минимально возможное время обратного восстановления, которое должно быть тем ниже, чем выше несущая частота. Пожалуй самым лучшим вариантов из доступных на роль диода D3, который только можно найти - это диод ES1D с временем обратного восстановления 15 нс. Допускается также установка других диодов с временем восстановления до 30 нс, например: MURS120, с временем обратного восстановления 25 нс. Обратное напряжение диода, выбранного в качестве D3, должно быть не менее чем сумма питающий напряжений положительного и отрицательного плеч усилителя. То есть, если напряжения питания усилителя, например +/- 50 В, то обратное напряжение диода D3 должно быть не менее 120 В (с учетом запаса по напряжению). Допустимый прямой ток диода D3 должен быть не менее 1 А. В качестве диода D3, не рекомендуется использовать диоды Шоттки из-за их крайне высокого обратного тока. Почти такие же требования предъявляются и к диоду D2: он должен быть максимально быстрым и иметь такое же допустимое обратное напряжение, как и диод D3. Однако, допускается установка диодов с меньшим допустимым током и немного большим временем обратного восстановления. В авторском варианте применен диод BAV102, с допустимым обратным напряжением и током 200 В и 0,25 А, соответственно, и временем обратного восстановления 50 нс. В качестве D2, допускается устанавливать диод той же модели что и в позиции D3.
Как выше уже упоминалось, IRS2092 имеет возможность ступенчатого задания необходимой продолжительности мертвого времени (оно задается с помощью резисторов R36 и R37). Всего ступеней четыре: 25, 40, 65 и 105 нс. Установленное значение мертвого времени зависит от напряжения на девятом выводе микросхемы DT.
Комментарии 3