Тема: Основы онтогенеза (эмбриональное и постэмбриональное развитие)
1. Периодизация онтогенеза.
2. Эмбрионогенез.
3. Регуляция действия генов в онтогенезе.
4. Критические периоды развития. Тератогенез.
5. Периодизация постнатального онтогенеза.
6. Рост: закономерности и регуляции роста.
7. Конституция и габитус.
8. Смерть и старость. Теории старения.
9. Смерть клиническая и биологическая.
10. Понятие о реанимации и эвтаназии.
Индивидуальное развитие организма, или онтогенез, - это совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до смерти. В онтогенезе происходит реализация наследственной информации, полученной организмом от родителей.
Онтогенез в зависимости от характера развития организмов типируют на прямой и непрямой, в связи с чем различают прямое и непрямое развитие. Прямое развитие организмов в природе встречается в виде неличиночного и внутриутробного развития, тогда как непрямое развитие наблюдается в форме личиночного развития.
Личиночное развитие. Под этим развитием понимают непрямое развитие, поскольку организмы в своем развитии имеют одну или несколько личиночных стадий. Личиночное развитие характерно для насекомых, амфибий, иглокожих. Личинки этих животных ведут самостоятельный образ жизни, подвергаясь затем превращениям. Поэтому это развитие называют еще развитием с метаморфозами.
Неличиночное развитие. Это развитие также характерно для организмов, развивающимся прямым путем, например, для млекопитающих, включая человека. Поскольку яйцеклетки этих организмов очень бедны питательными веществами, то все жизненные функции зародышей обеспечиваются материнским организмом посредством образования из тканей матери и зародыша провизорных органов, среди которых главным является плацента. Эволюционно внутриутробное развитие является самой поздней формой, однако оно наиболее выгодно для зародышей, так как эффективно обеспечивает их выживание.
Онтогенез подразделяют на проэмбриональный, эмбриональный и постэмбриональный периоды. В случае человека период развития до рождения называют пренатальным или антенатальным, после рождения – постнатальным. Развивающийся зародыш до образования зачатков органов называют эмбрионом, после образования зачатков органов – плодом.
Проэмбриональное развитие. Этот период в индивидуальном развитии организмов связан с образованием гамет в процессе гаметогенеза. Мужские половые клетки не имеют существенных отличий от других клеток, тогда как яйцеклетки отличаются тем, что они содержат очень много желтка. Учитывая количество желтка и распространение его в яйцеклетках, последние классифицируют на три типа:
1) изолецитальные яйцеклетки, содержащие немного желтка, который локализован равномерно по всей клетке. Эти яйцеклетки продуцируются иглокожими (морскими ежами), низшими хордовыми (ланцетниками), млекопитающими;
2) телолецитальные яйцеклетки, содержат большое количество желтка, который сосредоточен на одном из полюсов – вегетативном. Такие яйцеклетки продуцируются моллюсками, земноводными, рептилиями, птицами. Например, яйцеклетки лягушки состоят на 50% из желтка, яйцеклетки кур – на 95%. На другом полюсе (анимальном) телолецитальных яйцеклеток сосредоточены цитоплазма и ядро;
3) центролецитальные яйцеклетки, в которых желтка немного и он занимает центральное положение. Периферию таких яйцеклеток занимает цитоплазма. Центролецитальные яйцеклетки продуцируются членистоногими.
Для проэмбрионального периода характерно также то, что в этот период в гаметах происходят метаболические процессы, связанные с накоплением молекул ДНК.
2. Эмбриогенез (от греч. еmbryon - зародыш), или эмбриональный период, начинается со слияния мужских и женских половых клеток, которые представляют собой процесс оплодотворения яйцеклеток. У организмов, для которых характерно внутриутробное развитие, эмбриональный период заканчивается рождением, а у организмов, которым свойственны личиночный и неличиночный типы развития, эмбриональный период завершается выходом организма из яйцевых или зародышевых оболочек соответственно. В пределах эмбрионального периода различают стадии зиготы, дробления, бластулы, образования зародышевых листков, гистогенеза и органогенеза.
Зигота. Оплодотворение заключается в серии процессов, в которых мужская половая клетка инициирует развитие яйцеклетки. В активированной мужской гаметой яйцеклетки происходит ряд физических химических процессов, включая повышенный синтез белков. Перемещение протоплазмы ведет к установлению билатериальной симметрии яйцеклетки. Ядра сливаются, восстанавливается диплоидный набор хромосом. Таким образом создается одноклеточный организм.
Дробление. Оно представляет собой начальный период развития зиготы (оплодотворенного яйца), которое заключается в делении зиготы путем митоза. Деление начинается с появления на поверхности яйцеклетки борозды. Первая борозда приводит к образованию двух клеток – двух бластомеров, вторая – четырех бластомеров, третья – восьми бластомеров (рис.1). Группа клеток, образованная в результате последовательных дроблений, получила название морулы (от лат. morum – тутовая ягода).
Рис. 1. Дробление зиготы человека.
А—два бластомера; Б—три бластомера; В—четыре бластомера; Г—морула; Д—разрез морулы; Е, Ж—разрез ранней и поздней бластоцисты: 1—эмбриобласт, 2—трофобласт, 3—бластоцель.
Биологическое значение этой стадии заключается в том, что из крупной клетки, которой является яйцеклетка, образуются более мелкие клетки, в которых уменьшено отношение цитоплазмы к ядру.
Дробление зиготы завершается образованием многоклеточной структуры, получившей название бластулы (от греч. blastos - росток). Эта структура имеет форму пузырька, называемого бластодермой, и состоящего из одного слоя клеток. Теперь эти клетки называют эмбриональными. По размерам бластула сходна с яйцеклеткой. В период дробления увеличивается количество ядер и общее число ДНК. Синтезируется также небольшое количество мРНК и тРНК, тогда как рибосомная РНК еще не обнаруживается.
Стадию бластулы проходят все животные, но каждом случае есть особенности. У млекопитающих деление идет неравномерно, поэтому морулы состоят из разного количества клеток. Кроме того, из части клеток образуется структура, называемая трофобластом, клетки которого питают зародыш и благодаря ферментам обеспечивают внедрение последнего в стенку матки. Поздней клетки трофобласта отслаиваются от зародыша и образуют пузырек, который заполняется жидкостью тканей матки.
Биологические значение этой стадии заключается в том, что из крупной клетки, каковой является яйцеклетка, образуются более мелкие клетки, в которых уменьшено отношение цитоплазмы к ядру и ядро имеет новое цитоплазматическое окружение.
Гаструляция (от греч. gastre – полость сосуда). Это следующий за образованием бластулы процесс движения эмбриональных клеток, который сопровождается формированием двух или трех (в зависимости от вида животных) слоев зародыша или так называемых зародышевых листков.
Рис.2. Строение бластулы.
Развитие (гаструляция) изолецитальных яиц происходит путем инвагинации (впячивания) вегетативного полюса во внутрь бластулы, в результате чего противоположные полюса почти сливаются, а бластоцель (полость бластулы) почти либо полностью исчезает. Внешний слой клеток зародыша получил название эктодермы (от греч. ectos – снаружи, derma - кожа), или наружного зародышевого листка, тогда как внутренний – энтодермы (от греч. entos - внутри), или внутреннего зародышевого листка. Образующаяся при этом полость получила название гастроцеля, или первичной кишки, вход в которую называют бластопором (первичным ртом).
Развитие двух зародышевых листков характерно для губок и кишечнополостных. Однако хордовым в период гаструляции присуще развитие третьего зародышевого листка – мезодермы (от греч. mesos - средней), образующегося между эктодермой и энтодермой.
Гаструляция является необходимым пререквизитом для последующих стадий развития, поскольку она приводит клетки в положение, открывающее возможность формировать органы. Дифференцированный на три эмбриональных закладки зародышевый материал дает начало всем тканям и органам развивающегося зародыша.
Развитие (дифференцировка) зародышевых листков сопровождается тем, что из них формируются различные ткани и органы. В частности, из эктодермы развиваются эпидермис кожи, ногти и волосы, сальные и потовые железы, нервная система (головной мозг, спинной мозг, ганглии, нервы), рецепторные клетки органов чувств, хрусталик глаза, эпителий рта, носовой полости и анального отверстия, зубная эмаль. Из энтодермы развиваются эпителий пищевода, желудка, кишок, желчного пузыря, трахеи, бронхов, легких, мочеиспускательного канала, а также печень, поджелудочная железа, щитовидная, паращитовидные и зобная железы. Из мезодермы развиваются гладкая мускулатура, скелетные и сердечные мышцы, дерма, соединительная ткань, кости и хрящи, дентин зубов, кровь и кровеносные сосуды, брыжейка, почки, семенники и яичники. У человека первыми обособляется головной и спинной мозг. Через 2 месяца появляются почти все структуры тела. Органогенез заканчивается к концу эмбрионального периода. Если дефинитивное ротовое отверстие образуется на месте первичного рта (бластопора), то этих животных называют первичноротыми (черви, моллюски, членистоногие).
Рис.3. Процесс гисто- и органогенеза.
Если же дефинитивный рот образуется в противоположном месте, то этих животных называют вторичноротыми (иглокожие, хордовые).
Способы гаструляции различны. Выделяют четыре разновидности направленных в пространстве перемещений клеток, приводящих к преобразованию зародыша из однослойного в многослойный.
Инвагинация — впячивание одного из участков бластодермы внутрь целым пластом. У ланцетника впячиваются клетки вегетативного полюса, у земноводных инвагинация происходит на границе между анимальным и вегетативным полюсами в области серого серпа. Процесс инвагинации возможен только в яйцах с небольшим или средним количеством желтка.
Эпиболия — обрастание мелкими клетками анимального полюса более крупных, отстающих в скорости деления и менее подвижных клеток вегетативного полюса. Такой процесс ярко выражен у земноводных.
Деламинация — расслоение клеток бластодермы на два слоя, лежащих друг над другом. Деламинацию можно наблюдать в дискобластуле зародышей с частичным типом дробления, таких, как пресмыкающиеся, птицы, яйцекладущие млекопитающие. Деламинация проявляется в эмбриобласте плацентарных млекопитающих, приводя к образованию гипобласта и эпибласта.
Иммиграция — перемещение групп или отдельных клеток, не объединенных в единый пласт. Иммиграция встречается у всех зародышей, но в наибольшей степени характерна для второй фазы гаструляции высших позвоночных.
Для обеспечения связи зародыша со средой служат так называемые провизорные органы, которые существуют временно. В зависимости от типа яйцеклеток провизорными органами являются разные структуры. У рыб, рептилий и птиц к провизорным органам относится желточный мешок. У млекопитающих желточный мешок закладывается в начале эмбриогенеза, но не развивается. Позднее он редуцируется. Наружная оболочка эмбриона называется хорионом. Она врастает в матку. Место наибольшего врастания в матку называют плацентой. Зародыш с плацентой связан через пуповину, или пупочный кантик, в котором имеются кровеносные сосуды, обеспечивающие плацентарное кровообращение. Метаболизм плода обеспечивается через плаценту.
3. Очевидно, что генетический контроль развития существует, ибо как тогда понять, почему из яйца крокодила развивается крокодил, а из яйца человека — человек. Каким образом гены определяют процесс развития? Это центральный и очень сложный вопрос, к которому ученые начинают подходить, но для всеобъемлющего и убедительного ответа на него данных явно недостаточно. Главным приемом ученых, изучающих генетику индивидуального развития, является использование мутаций. Выявив мутации, изменяющие онтогенез, исследователь проводит сравнение фенотипов мутантных особей с нормальными. Это помогает понять, как данный ген влияет на нормальное развитие. С помощью многочисленных сложных и остроумных методов стараются определить время и место действия гена.
Анализ генетического контроля затрудняется несколькими моментами. Прежде всего тем, что роль генов неодинакова. Часть генома состоит из генов, определяющих так называемые жизненно важные функции и отвечающих, например, за синтез тРНК или ДНК-полимеразы, без которых невозможно функционирование ни одной клетки. Эти гены названы «house keeping» или генами «домашнего хозяйства». Другая часть генов непосредственно участвует в детерминации, дифференцировке и морфогенезе, т.е. функция их, по-видимому, более специфическая, ключевая.
Для анализа генетического контроля необходимо, кроме того, знать место первичного действия данного гена, т.е. следует различать случаи относительной, или зависимой, плейотропии от прямой, или истинной, плейотропии. В случае относительной плейотропии, как, например, при серповидно-клеточной анемии, существует одно первичное место действия мутантного гена — гемоглобин в эритроцитах, а все остальные наблюдаемые при ней симптомы, такие, как нарушение умственной и физической деятельности, сердечная недостаточность, местные нарушения кровообращения, увеличение и фиброз селезенки и многие другие, возникают как следствие аномального гемоглобина. При прямой плейотропии все разнообразные дефекты, возникающие в различных тканях или органах, вызываются непосредственным действием одного и того же гена именно в этих разных местах.
Наконец, следует различать еще два способа действия мутаций на фенотип, вызывающих дизруптивные либо гомеозисные изменения. В первом случае, и это бывает чаще всего, мутации приводят к нарушению нормального развития, отсутствию или аномальному строению органов. В других случаях отклонение от нормы заключается в том, что под действием мутации типичный орган замещается гомологичным или совсем другим, но с нормальным строением. Это особый класс мутаций, описанный у насекомых и получивший название гомеозисных мутаций.
Существуют мутации, которые указывают на существование у многих видов животных так называемых генов с материнским эффектом. Особенность этих генов состоит в том, что материнский геном во время овогенеза продуцирует ферменты, необходимые для метаболизма раннего зародыша, а также передает информацию, касающуюся расположения и организации структур зародыша, т.е. оказывает влияние на морфогенез. Поэтому самка, гомозиготная по рецессивному мутантному аллелю и продуцирующая аномальные яйца, даже при скрещивании с нормальным самцом дает нежизнеспособное потомство. Сама же она развивалась вполне нормально, поскольку ее мать в этом случае могла быть только гетерозиготной и в ее яйцах были все факторы, необходимые для раннего развития. Интересно, что если в дефектные яйца рецессивной самки ввести цитоплазму от нормальных яиц, то зародыши будут спасены. Факторы, детерминируемые генами с материнским эффектом, обычно оказывают свое влияние на зародыш до периода гаструляции. Начиная с гаструляции все большую роль играет информация самого зародыша.
Известны и другие мутации, оказывающие влияние на раннее развитие, но не связанные с материнским эффектом. К ним относятся, например, мутации рибосомных генов. У шпорцевой лягушки (Xenopus laevis) мутанты были лишены части или всех рибосомных генов. Цитологически это проявлялось в полном или частичном отсутствии ядрышка. В гомозиготном состоянии мутантных аллелей зародыши становятся полностью нежизнеспособными на стадии выклева, так как у них не образуются новые рибосомы, а те, что были запасены в яйце, уже полностью использованы.
У мышей также известен целый ряд рецессивных мутаций сложного локуса Т 17-й хромосомы, затрагивающих раннее развитие. Локус Т представлен множеством (117) аллелей, обозначаемых знаком t с дополнительными индексами: t1, t2, t3 и т.д. Около 30% t-генов в гомозиготном состоянии вызывает гибель зародышей, часть аллелей являются полулетальными. Весь этот ряд рецессивных аллелей t распадается на восемь групп, которые могут быть комплементарны друг другу и в гетерозиготном состоянии не приводить к гибели зародыша.
Известны также и пять доминантных мутаций Т-локуса. Каждая из восьми групп обусловливает разного рода дефекты. Один из аллелей останавливает превращение морулы в бластоцисту, состоящую из трофобласта и эмбриобласта. Такие морулы гибнут. Другая мутация приводит к тому, что развившийся трофобласт не вступает в контакт со стенкой матки и зародыш тоже гибнет. Третьи мутантные зародыши не образуют внезародышевой эктодермы, у четвертых — гибнут клетки зародышевой эктодермы, у пятых — клетки зародышевой эктодермы не способны мигрировать в области первичной полоски и образовывать мезодерму, у шестых — уже образовавшиеся структуры нервной системы дегенерируют и т.д. Первичное нарушение, лежащее в основе всех этих эффектов, всего лишь одного локуса пока не выяснено. Однако очевидно, что локус Т играет первостепенную роль в морфогенезе эктодермы мышиного зародыша и организма в целом.
Известны мутации с более специфическим действием. У аксолотля мутация с (cardial lethal), наследуемая как простой аутосомно-рецессивный признак, вызывает нарушение развития сердца и его неспособность к сокращениям. Мутантные особи раздуты переполняющей их жидкостью, а пищеварительная система и жабры у них недоразвиты. Установлено, что у позвоночных сердце развивается в результате индукционного воздействия со стороны головного участка энтодермы. Опыты по пересадке сердечной мезодермы показали, что мутантные зародыши не могут обеспечить развитие сердца из подсаженной нормальной сердечной мезодермы. Это указывает на отсутствие индукционной активности головного участка энтодермы у мутанта с генотипом cc.
Неразрывную связь генов с морфогенезом отдельных органов и систем органов можно наблюдать также на примере мутации Tfm (Testicular feminization locus) у млекопитающих. У человека, мышей и крыс этот ген наследуется как сцепленный с полом. Самки, гетерозиготные по мутантному гену, т.е. ХTfmX, по существу, нормальны, но половина их генотипически мужских потомков ХTfmY имеют женский фенотип и стерильны. В основе этого дефекта лежит отсутствие специфического белка, служащего рецептором тестостерона. У особей ХTfmY рецептор не синтезируется. Самки ХTfmХTfm нормальны во всех отношениях и фертильны. Это свидетельствует о том, что нормальное половое развитие самки может проходить без продукта этого гена.
Органогенез — период, когда действие мутаций проявляется в большой мере. Развитие каждого органа и тем более системы органов контролируется совокупным координированным действием сотен генов. У человека известны свыше 120 форм наследственной глухоты, которые возникают в результате экспрессии мутантных генов, отвечающих за формирование слухового анализатора. У человека описано также около 250 наследственных поражений глаз, около 150 наследственных аномалий развития скелета, не менее 18 генов, отвечающих за нормальную дифференциацию пола. О значении генетического контроля онтогенеза говорят многочисленные болезни, связанные с геномными и хромосомными мутациями.
В целом генетический контроль онтогенеза очевиден, однако в процессе развития зародыш и его части обладают способностью к саморазвитию, регулируемому самой целостной развивающейся системой и не запрограммированному в генотипе зиготы.
4. С конца XIX в. существует представление о наличии в онтогенетическом развитии периодов наибольшей чувствительности к повреждающему действию разнообразных факторов. Эти периоды получили название критических, а повреждающие факторы — тератогенных.
Некоторые ученые полагают, что наиболее чувствительными к самым разнообразным внешним воздействиям являются периоды развития, характеризующиеся активным клеточным делением или интенсивно идущими процессами дифференциации. П. Г Светлов, в середине XX столетия внесший большой вклад в разработку проблемы, считал, что критические периоды совпадают с моментом детерминации, который определяет конец одной и начало другой, новой цепи процессов дифференциации, т.е. с моментом переключения направления развития. По его мнению, в это время имеет место снижение регуляционной способности. Критические периоды не рассматривают как наиболее чувствительные к факторам среды вообще, т.е. независимо от механизма их действия. Вместе с тем установлено, что в некоторые моменты развития зародыши чувствительны к ряду внешних факторов, причем реакция их на разные воздействия бывает однотипной.
Критические периоды различных органов и областей тела не совпадают друг с другом по времени. Причиной нарушения развития зачатка является большая чувствительность его в данный момент к действию патогенного фактора, чем у других органов. При этом действие разных факторов может вызвать одну и ту же аномалию. Это свидетельствует о неспецифическом ответе зачатка на повреждающие воздействия. В то же время некоторая специфичность тератогенных факторов выражается в том, что, будучи различными, они оказывают максимальное повреждающее действие не на одних и тех же стадиях развития.
П. Г. Светлов установил два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процессом имплантации зародыща, второй — с формированием плаценты. Имплантация приходится на первую фазу гаструляции, у человека —на конец 1-й —начало 2-й недели. Второй критический период продолжается с 3-й по 6-ю неделю. По другим источникам, он включает в себя также 7-ю и 8-ю недели. В это время идут процессы нейруляции и начальные этапы органогенеза.
Повреждающее действие во время имплантации приводит к ее нарушению, ранней смерти зародыша и его абортированию. По некоторым данным, 50—70% оплодотворенных яйцеклеток не развиваются в период имплантации. По-видимому, это происходит не только от действия патогенных факторов в момент начавшегося развития, но и в результате грубых наследственных аномалий.
Действие тератогенных факторов во время эмбрионального (с 3 до 8 нед) периода может привести к врожденным уродствам. Чем раньше возникает повреждение, тем грубее бывают пороки развития.
У каждого органа есть свой критический период, во время которого его развитие может быть нарушено. Чувствительность различных органов к повреждающим воздействиям зависит от стадии эмбриогенеза (рис. 4).
Рис. 4. Чувствительность развивающегося зародыша человека к повреждающим факторам
Заштрихованным отрезком обозначен период наиболее высокой чувствительности, незаштрихованным — период меньшей чувствительности; 1—38—недели внутриутробного развития
Факторы, оказывающие повреждающее воздействие, не всегда представляют собой чужеродные для организма вещества или воздействия. Это могут быть и закономерные действия среды, обеспечивающие обычное нормальное развитие, но в других концентрациях, с другой силой, в другое время. К ним относят кислород, питание, температуру, соседние клетки, гормоны, индукторы, давление, растяжение, электрический ток и проникающее излучение.
Классификация врожденных пороков развития
Врожденными пороками развития называют такие структурные нарушения, которые возникают до рождения (в пренатальном онтогенезе), выявляются сразу или через некоторое время после рождения и вызывают нарушение функции органа.
В зависимости от причины все врожденные пороки развития делят на наследственные, экзогенные (средовые) и мультифакториальные.
Наследственными называют пороки, вызванные изменением генов или хромосом в гаметах родителей, в результате чего зигота с самого возникновения несет генную, хромосомную или геномную мутацию. Генетические факторы начинают проявляться в процессе онтогенеза последовательно, путем нарушения биохимических, субклеточных, клеточных, тканевых, органных и организменных процессов. Время проявления нарушений в онтогенезе может зависеть от времени вступления в активное состояние соответствующего мутированного гена, группы генов или хромосом. Последствия генетических нарушений зависят также от масштаба и времени проявления нарушений.
Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Комментарии 1