Часть 3. Нелинейная система, эффект бабочки и время Ляпунова.
ЛИНЕЙНОСТЬ И НЕЛИНЕЙНОСТЬ
Почему такая динамическая система, как часы, ведёт себя «по Лапласу», то есть идеально правильно, а погода — нет?
Как показали исследования, хаотической может быть только нелинейная система.
Две сцеплённые между собой одинаковые шестерёнки — это классический пример линейной системы: если мы начнём быстрее вращать одну шестерёнку, автоматически начнёт вращаться быстрее и другая. Причём во сколько раз быстрее мы будем вращать первую, в точности во столько же раз ускорится вторая. Такая система линейна, а потому хаосом быть не может.
А вот в случае с погодой параметры независимы друг от друга: если, скажем, мы увеличим скорость ветра в два раза, ведь его температура при этом не станет в два раза выше, правда?
Возьмём ещё один пример. Допустим, рабочий делает на станке детали и получает деньги за каждую изготовленную деталь. Если он начнёт работать в два раза быстрее, то сделает в два раза больше деталей и получит в два раза больше денег. Такая система линейна, в ней зарплата линейно зависит от скорости работы.
Но заменим теперь рабочего на, скажем, телеведущего. Допустим, телеведущий решил говорить во время выпусков новостей в два раза быстрее — как вы считаете, прибавят ему за это зарплату в два раза? Данная система нелинейна.
ЭФФЕКТ БАБОЧКИ
Другой важный вывод, к которому пришла теория хаоса, следующий. При малом расхождении начальных условий динамической системы разброс её конечных состояний может быть очень большим. Что это означает?
Если взять механические часы и повернуть чуть-чуть одну шестерёнку, то вторая, сцеплённая с ней, тоже повернётся чуть-чуть. А вот в хаотических системах совсем не так!
Например, лежит снег на склоне горы. Одна снежинка чуть-чуть подвинула две другие, эти две немножко подвинули соседние — и через 5 минут по склону несётся с огромной скоростью чудовищная лавина снега!
Это явление часто называют эффектом бабочки. Объясняя студентам теорию хаоса, американский учёный Лоренц приводил пример, когда «взмах крыла бабочки где-то над Америкой может в результате сложной цепи событий привести к урагану над Тихим океаном».
ВРЕМЯ ЛЯПУНОВА
Третий важный вывод теории хаоса — ограниченность возможности предсказания состояния системы в будущем. Для каждой хаотической системы существует некое время, называемое временем Ляпунова, за пределами которого её поведение становится полностью непредсказуемым.
Что это означает? С помощью формул и расчётов мы можем в какой-то степени предсказать поведение динамической системы — но только до определённого момента! Скажем, местный гидрометцентр может дать надёжный прогноз погоды на ближайшие 2 часа. Вполне приличный прогноз — на ближайшие 6 часов. Более-менее приемлемый — на завтра. Однако уже прогноз погоды на 3–4 дня вперёд достоверным не будет!
Другой пример — наша Солнечная система. С одной стороны, она управляется по законам небесной механики, и учёные могут очень точно предсказать движение планет, спутников и других небесных тел. Да, это так — но со временем эта точность падает! Для Солнечной системы время Ляпунова составляет 50 миллионов лет — а это значит, что предсказать положение планет и их спутников на 50 миллионов лет вперёд (пускай даже хоть сколько-нибудь приблизительно!) мы не в состоянии. Вообще! Никак!
Так что никакого всезнающего «демона Лапласа» (или «искусственного интеллекта», как сейчас это принято называть) быть не может. Причём не может быть именно согласно той самой науке, на которую так любят ссылаться многие сторонники «тотальной цифровизации».
Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Нет комментариев