Многомерные пространства .
Одномерное пространство
|а|1 – одномерное пространство. Когда пошёл Свет (который мы называем Инглия), появилась первая пространственная характеристика, которую начал заполнять Свет. И как только Свет начал наполнять, в этот момент: «В Новой Действительности появилось сверхвеликое абсолютное Нечто». А так как Нечто не было тем, чем являлся Ра-М-Ха, значит оно стало точкой противоположности. А если есть что-то одно и ему противоположное, это равно двум, как бы светлое и тёмное. Поэтому: |а|1 = 2.
ПОДПРАВИЛО: любая фигура, объект или структура одномерного пространства будет иметь 2 опорные точки (если образно, то эти точки: Инглия и Нечто).
ПРИМЕР одномерного пространства. Если на листе бумаги нарисовать любой рисунок, многоугольник или даже точку, и посмотреть на лист сбоку, получится одна линия, а по бокам две опорные точки, т.е. два начала между которыми они упираются. Поэтому проекция изначальной точки в одномерном пространстве - линия (отрезок).
Вспомните, когда в школе рисовали оси координат, всегда изображали где-то минус безконечность, где-то плюс безконечность. Вот этот плюс безконечность – это положительное, светлое, а минус безконечность – как бы мрачное, уходящее во мрак.
Двухмерное пространство
Чтобы получить структурную характеристику какого-то отрезка в двухмерном пространстве, мы должны провести проекцию к длине отрезка на длину данного отрезка. Т.е. спроецировать отрезок на его длину. Получим квадрат, у которого 4 опорные точки.
Трёхмерное пространство
Чтобы получить фигуру трёхмерного пространства, надо спроецировать |а|2 на |а|2, то есть провести проекцию уже не к отрезку, а к квадрату на длину квадрата. Получим куб и 8 опорных точек.
Четырёхмерное пространство
Чтобы получить четырёхмерную фигуру, надо провести проекцию |а|3 на длину |а|3, т.е. спроецировать куб на длину куба. Таким образом, характеристику выводим в сторону и получается куб в кубе и 16 опорных точек. Т.е. увеличилась плотность, но и увеличилась в пространстве.
И так далее, в пятимерном пространстве будет 32 опорные точки, в шестимерном 64, в семимерном 128… в шестнадцатимерном пространстве 65 536 опорных точек. Шестнадцатимерное пространство – это следующее за нашим 4-хмерным гармоничное пространство. Если у нас здесь раскрыто 16 каналов (с
Нет комментариев