За последний десяток лет литий-ионные аккумуляторы из дорогостоящей экзотики перешли в разряд самых распространенных источников автономного питания. Неудивительно, что они стали популярными и в руках самодельщиков, в том числе и начинающих. Иногда от технических решений в их творениях волосы становятся дыбом – ведь особенностью аккумуляторов данного типа является их повышенная опасность, в первую очередь – пожарная. Мой рассказ о том, как правильно «готовить» эту «рыбу фугу», чтобы никто не сгорел и не взорвался.
Принцип работы литий-ионнного аккумулятора
Химические источники тока на основе лития получили распространение уже давно. Литиевые батарейки уже в конце XX века прочно укрепились в часах, калькуляторах, материнских платах компьютеров, пультах дистанционного управления. По принципу действия они мало чем отличаются от марганец-цинковых элементов, за тем исключением, что литий заменяет собой цинк, а вместо водного раствора щелочи или хлористого аммония – электролит на основе неводных растворителей, таких как пропиленкарбонат или хлористый тионил, в котором растворена литиевая соль, диссоциирующая с образованием иона лития, который и переносит ток в таком электролите. Но замена цинка на литий привела к тому, что напряжение возросло с полутора до трех вольт, а энергоемкость увеличилась в несколько раз. При этом химически инертный органический электролит и высокая степень герметичности конструкции свели саморазряд практически на нет -- отдавая микроамперные токи, такая батарейка может работать десятилетиями.
Знаете, почему нельзя заряжать обычные батарейки? Казалось бы, при протекании тока в зарядном направлении, на электродах будут идти процессы «в обратном порядке»: на отрицательном электроде будет осаждаться цинк, а на положительном – активная масса, бывшая когда-то двуокисью марганца и отдавшая свой кислород, будет снова окисляться, вновь превращаясь в свежую MnO2. Но все портит то, что одновременно с этими процессами разлагается и вода в электролите. Выделяющиеся газы раздувают корпус батарейки и выдавливают электролит наружу с печальными последствиями для аппаратуры.
В литиевом элементе нет воды. Пропиленкарбонат, служащий растворителем, не подвержен электролизу, поэтому такой элемент можно зарядить без побочных реакций. Однако, такой литиевый аккумулятор «не взлетел». Вернее, он как раз взлетал – на воздух. Литий никак не хотел ложиться на свой анод аккуратным тонким слоем, а кристаллизовался в виде игольчатых кристаллов – дендритов. Точно такие же дендриты, к слову, образуются и при попытке зарядить марганец-цинковую батарейку, но именно в литиевом аккумуляторе они приводили к катастрофе. Рано или поздно такой дендрит перекрывал промежуток между анодом и катодом и вызывал короткое замыкание. Протекающий ток разогревал и катодную массу, из которой выделялся кислород, и литий, который в этом кислороде воспламенялся, и сепаратор, который просто прекращал свое существование, после чего литий, электролит и катодная масса – горючее и окислитель – превращались в адскую смесь. Как рассказывал мне один знакомый, причастный к этим экспериментам изобретатель – военные, для которых они пытались эти аккумуляторы создать, потеряли всякий интерес к ним, как к источникам тока, но регулярные мощные взрывы, сопровождающиеся ослепительным красным (от лития) пламенем, их восхищали и каждый раз военные интересовались, нельзя ли куда-то применить эту взрывчатку.
В этом направлении работали и за рубежом, и кое-чего даже добились, применяя механически более прочные керамические сепараторы, особые методы заряда, специальные добавки в электролит. Но все равно опасность дендритообразования сохранялась – слишком опасным был такой аккумулятор для его практического применения, если превышал размеры и емкость крохотной часовой батарейки-таблетки.
Прорыв принесли два открытия. Первое – это обнаружение способности некоторых сложных оксидов и сульфидов, содержащих литий, отдавать и поглощать обратно ионы лития на катоде. Второе – способность соединений слоистой структуры (графит, дисульфид молибдена) обратимо поглощать в межслоевое пространство значительные количества лития (вплоть до соединения состава LiC6), захватывая его атомы немедленно после разрядки ионов Li+ на аноде и предотвращая его выделение в металлической форме, а значит, предотвращая образование дендритов. За эти открытия и изобретение литий-ионного аккумулятора в прошлом году была присуждена Нобелевская премия. Ее лауреаты – М.С. Уиттингем, первооткрыватель явления интеркаляции лития в дисульфиды титана и молибдена, впервые предложивший использовать это явление в аккумуляторах, Дж. Гуденаф, исследовавший обратимость поглощения и выделения ионов лития кобальтитом лития на катоде, и собственно, изобретатель литий-ионного аккумулятора Акира Ёсино.
Принцип работы литий-ионного аккумулятора Акиры Ёсино, изобретенного им в 1991 году, состоит в следующем. Однозарядные катионы лития – это практически единственный ион, переносящий ток в органическом неводном электролите. Противоионом является громоздкая и малоподвижная молекулярная «конструкция», обладающая отрицательным зарядом.
Ион Li+ при зарядке аккумулятора разряжается на поверхности графитового анода, превращаясь в нейтральный атом лития. Этот атом немедленно вступает поглощается графитом, проникая между слоями его кристаллической решетки. Образуется графитид лития – так называемый интеркалят или соединение внедрения. По своим химическим свойствам это сильный и активный восстановитель.
Одновременно с этим, кобальтит лития на катоде поставляет в раствор ионы лития, а сам при этом, теряя литий, все больше по составу приближается к двуокиси кобальта, в результате чего становясь сильным и активным окислителем.
Разность электрохимических потенциалов между этими окислителем и восстановителем равна ЭДС литий-ионного аккумулятора.
При разряде происходят обратные процессы. Литий, покидая межслоевое пространство на аноде, отдает во внешнюю цепь электрон и приобретает заряд, становясь катионом, а графитид лития – просто графитом. На катоде эти катионы возвращается в вакансии кристаллической решетки кобальтита лития, который теряет свои окислительные свойства, принимая электрон во внешнюю цепь.
Из-за отсутствия побочных процессов данная электрохимическая система обладает весьма высокой степенью обратимости и по этой причине характеризуется прекрасным КПД.
Литий-полимерные аккумуляторы не являются, как многие думают, каким-то отдельным видом аккумуляторов. В них вместо жидкого электролита используется гелеобразный на полимерной основе, а все электрохимические процессы в них ничем не отличаются. Отсутствие (вернее, минимальное количество) жидкого электролита позволяет придавать им практически любую форму и вместо прочного металлического корпуса помещать их в корпуса из полимерной пленки в виде запаянного пакетика, что помимо прочего повышает плотность хранения энергии.
Существуют также разновидности литий-ионных аккумуляторов с различными электрохимическими системами, такие, как литий-железофосфатные и литий-титанатные. Принцип действия у них тот же самый, но иные материалы катодной массы и, соответственно, другие напряжения. Удельная емкость этих аккумуляторов ниже, чем у классической кобальтовой литий-ионной системы, но они превосходят их по сроку службы, способности отдавать ток при низких температурах и, по утверждению производителей – по безопасности.
Собственно, безопасность – едва ли не основная "беда" литий-ионных аккумуляторов.
Скрытая угроза
Увы, «укротив» литий, Акира Ёсино не сделал этого огненного льва безобидным мышонком. Да и как можно ожидать полной безопасности от устройства, в котором, повторюсь, сильный и активный окислитель соседствует с столь же сильным и активным восстановителем и разделяют их лишь несколько десятков микрон пористой полимерной пленки-сепаратора? Стоит этой пленке где-нибудь прохудиться, допустив короткое замыкание, лавинообразный процесс саморазогрева и саморазрушения уже не остановить. Содержимое аккумулятора превращается во взрывчатую смесь горючего и окислителя. И эту смесь уже подожгли.
То, что литий-ионные аккумуляторы обычно не взрываются, обусловлено множеством предосторожностей, которые соблюдаются при их эксплуатации. Соблюдаются не силами пользователя – за этим следят автоматические электронные устройства. Там, где применяется литий-ионный аккумулятор, нет места простейшим зарядным устройствам из мира «свинца» и «никель-кадмия». Зарядное устройство обязано быть «умным». Процесс заряда литий-ионного аккумулятора многостадийный, требует строгого выдерживания параметров и должен быть вовремя завершен, и перекладывать ответственность за это на пользователя категорически недопустимо, так как его забывчивость в таком случае может привести к пожару или взрыву.
Дело в том, что отсутствие побочных процессов в литий-ионном аккумуляторе не абсолютно. Для того, чтобы их не было, нужно не выйти за определенную «безопасную» территорию. Так, при напряжении выше 4,2..4,5 В или при слишком большом токе заряда графит уже не успевает «впитать» литий, и он образует металлическую фазу. То же происходит, если графит теряет активную поверхность, что происходит, например, из-за переразряда. Как только на поверхности появляется металл, он начинает образовывать дендриты и… можно вызывать пожарных. Наконец, перенапряжение может вызвать электролиз компонентов электролита (в том числе и неконтролируемых примесей) и выделение газов, давление которых может нарушить герметичность аккумулятора, что также чревато пожаром – соединение внедрения лития в графит самовоспламеняется на воздухе.
Опасна и перегрузка при разряде. Перегрев разрядным током может вызвать вскипание или термическое разложение электролита, выделение кислорода из катодной активной массы, повреждение сепаратора. Результат тот же: КЗ и пожар. К тому же эффекту приведет и механическое повреждение аккумулятора.
Является «правилом хорошего тона» не полагаться на надежность зарядного устройства. В абсолютном большинстве промышленно выпускающихся устройств (за исключением «маргинальных» случаев вроде электронных сигарет и авиамоделей), содержащих литий-ионные аккумуляторы, независимо от контроллера, на который возложены функции заряда, имеется еще один контроллер, выполняющий функции защиты. В простейшем своем варианте (например, на микросхеме DW01A, являющейся основой плат защиты почти всех китайских аккумуляторов), он отключает аккумулятор при перезаряде (превышении допустимого напряжения), переразряде, слишком большом зарядном и разрядном токе, перегреве. В более сложных случаях к этим базовым функциям добавляется балансировка батареи (если она состоит из нескольких элементов, соединенных последовательно), контроль за ее «здоровьем», подсчет ампер-часов при заряде и разряде (что позволяет определить оставшийся процент заряда гораздо точнее, чем при простом измерении напряжения) и другие функции. Данный контроллер – его называют Battery management system (BMS) или просто «платой защиты», как правило, является неотделимой частью аккумуляторной батареи, находясь с ней в одном корпусе и будучи наглухо припаянным к его выводам.
Есть еще третья ступень защиты. Это механическое устройство, разрывающее цепь при повышении давления или температуры внутри «банки» аккумулятора. К сожалению, оно – не панацея, так как во многих случаях нагрев и газовыделение начинаются уже после того, как возгорание батареи уже нельзя остановить.
Кстати, типичная цифра, характерная для LiIon – 250 Вт*ч/кг или 0,9 МДж/кг. Это всего вчетверо меньше запаса энергии в таких ВВ, как тротил. В мощном ноутбуке «тротиловый эквивалент» аккумулятора может быть сравним с ручной гранатой. Так что с литий-ионными аккумуляторами шутки плохи. Их взрыв вполне может привести к смерти и увечьям многих людей.
Видео и фотографии взрывов и возгораний литий-ионных аккумуляторов в сети можно найти много. Надеюсь, они убедят вас, что все более чем серьезно.
Заряжаем и разряжаем правильно
А теперь разберемся с тем, как правильно заряжать эти опасные литий-ионные аккумуляторы, чтобы они не были так опасны.
Общепринятым, рекомендуемым всеми производителями литий-ионных аккумуляторов, является алгоритм CC-CV. Это означает, что начинается заряд стабилизированным током, а при достижении определенного напряжения далее оно стабилизируется на этом уровне. Этот метод близок к методу заряда свинцовых аккумуляторов, отличаясь от него лишь режимом.
Нет комментариев