Пьезокерамика обеспечивает наибольшую удельную мощность генерации звуковых колебаний, поэтому она используется в гидролокаторах со сферической/цилиндрической антенной увеличенной дальности действия в режиме активного излучения, устанавливаемой в носовой оконечности морских носителей (на наибольшем расстоянии от движителя, генерирующего паразитные шумы) или монтируемой в капсуле, опускаемой на глубину и буксируемой за носителем.
Пьезофторполимерная пленка с малой удельной мощностью генерации звуковых колебаний применяется для изготовления конформных антенн, расположенных непосредственно на поверхности корпуса надводных и подводных аппаратов одинарной кривизны (для обеспечения изотропности гидроакустических характеристик), работающих на прием всех видов сигналов или на передачу сигналов небольшой мощности.
Оптоволоконный интерферометр работает только на прием сигналов и состоит из двух волокон, одно из которых испытывает сжатие-расширение под действием звуковых волн, а другое служит в качестве опорной среды для измерения интерференции лазерного излучения в обоих волокнах. В силу малого диаметра оптоволокна его колебания сжатия-расширения не искажают дифракционный фронт звуковых волн (в отличии от пьезоэлектрических гидрофонов больших линейных размеров) и позволяют обеспечить более точное определение положения объектов в водной среде. Из оптоволоконных модулей формируют гибкие буксируемые антенны и донные линейные антенны протяженностью до 1 км.
Пьезокерамика также используется в датчиках гидрофонов, пространственные сборки которых входят в состав плавучих буев, сбрасываемых в море с противолодочных самолетов, после чего гидрофоны опускаются на тросе на заданную глубину и переходят в режим шумопеленгации с передачей собранной информации по радиоканалу на борт самолета. Для увеличения площади контролируемой акватории вместе с плавучими буями сбрасываются серии глубинных гранат, взрывы которых гидроакустически подсвечивают подводные объекты.
В случае применения противолодочных вертолетов или квадрокоптеров для поиска подводных объектов используется опускаемая на кабель-тросе приемо-передающая антенна бортовой ГАС, представляющая собой матрицу из пьезокерамических элементов.
Конформные антенны из пьезофторполимерной пленки монтируются в виде нескольких секций, разнесенных вдоль борта ПА с целью определения не только азимута, но и расстояния (методом тригонометрии) до подводного источника шумов или отраженных локационных сигналов.
Гибкие буксируемые и донные линейные антенны из оптоволокна, несмотря на относительную дешевизну, обладают отрицательным эксплуатационным свойством – в силу большой протяженности «нитки» антенны она испытывает изгибные и крутильные колебания под действием набегающего потока воды, в связи с чем точность определения направления на объект кратно ухудшается по сравнению с пьезокерамическими и пьезофторполимерными антеннами с жестким полотном.
В связи с этим наиболее точные гидроакустические антенны выполняют в виде набора бобин, намотанных из оптоволокна и монтируемых на пространственных фермах внутри акустически прозрачных водонаполненных цилиндрических оболочек, защищающих антенны от внешнего воздействия потоков воды. Оболочки жестко крепятся к фундаментам, расположенным на дне и соединенным силовыми кабелями и линиями связи с береговыми центрами противолодочной обороны. В случае размещения внутри оболочек ещё и радиоизотопных термоэлектрических генераторов полученные устройства (автономные по энергоснабжению) переходят в разряд донных гидроакустических станций.
Современные ГАС обзора подводной обстановки, поиска и классификации подводных объектов работают в нижней части звукового диапазона – от 1 Гц до 5 КГц. Они монтируются на различных морских и авиационных носителях, входят в состав плавающих буев и донных станций, отличаются разнообразием форм и пьезоэлектрических материалов, местом своего монтажа, мощностью и режимом приема/излучения.
ГАС поиска мин, противодействия подводным диверсантам-аквалангистам и обеспечения звукоподводной связи работают в ультразвуковом диапазоне на частотах свыше 20 КГц, в том числе в так называемом режиме звуковидения с детализацией объектов в масштабе нескольких сантиметров. Характерным образцом подобных устройств является ГАС «Амфора», сферическая полимерная антенна которой устанавливается на передней верхней оконечности ограждения рубок подводных лодок
В случае наличия на борту мобильного носителя или в составе стационарной системы нескольких ГАС они объединяются в единый гидроакустический комплекс (ГАК) посредством совместной вычислительной обработки данных активной локации и пассивного шумопеленгования. Алгоритмы обработки предусматривают программное отстройку от шумов, генерируемых самим носителем ГАК, и внешнего шумового фона, генерируемого морским судоходством, ветровым волнением, многократным отражением звука от поверхности воды и дна на мелководье (реверберационных помех).
Алгоритмы вычислительной обработки
В основе алгоритмов вычислительной обработки шумовых сигналов, принятых от ПА, лежит принцип выделения циклически повторяющихся шумов от вращения лопастей движителей, работы щеток токосъемников электродвигателей, резонансный шум редукторов гребных винтов, вибрации от работы паровых турбин, насосов и другого механического оборудования.
Кроме того, использование базы данных спектров шумов, характерных для того или иного типа объектов, позволяет квалифицировать цели по признакам свой/чужой, подводный/надводный, военный/гражданский, ударная/многоцелевая подлодка, бортовая/буксируемая/опускная ГАС и т.д. В случае предварительного составления спектральных звуковых «портретов» отдельных ПА можно проводить их опознание по индивидуальным особенностям работы бортовых механизмов.
Выявление циклически повторяющихся шумов и построение трасс движения ПА требует накопления гидроакустической информации в течение десятков минут, что сильно замедляет обнаружение и классификацию подводных объектов. Гораздо более однозначными отличительными признаками ПА является звуки набора воды в балластные цистерны и их продувки сжатым воздухом, выхода торпед из торпедных аппаратов и подводный запуск ракет, а также работы гидролокатора противника в активном режиме, обнаруживаемой путем приема прямого сигнала на дистанции кратно большей, чем дистанция приема отраженного сигнала.
Кроме мощности локационного излучения, чувствительности приемных антенн и степени совершенства алгоритмов обработки полученной информации на характеристики ГАС существенное влияние оказывают подводная гидрологическая обстановка, глубина акватории, волнение поверхности моря, ледовое покрытие, рельеф дна, наличие шумовых помех от морского судоходства, песчаная взвесь, плавающая биомасса и другие факторы.
Гидрологическая обстановка определяется дифференциацией температуры и солености горизонтальных слоев воды, имеющих в результате различную плотность. На границе между слоями воды (так называемом термоклине) звуковые волны испытывают полное или частичное отражение, экранируя ПА от выше или ниже расположенной поисковой ГАС. Слои в толще воды образуются в диапазоне глубин от 100 до 600 метров и изменяют свое расположение в зависимости от сезона года.
Придонный слой воды, застаивающейся в углублениях морского дна, образует так называемое жидкое дно, непроницаемое для звуковых волн (за исключением инфразвука). Напротив, в слое воды одинаковой плотности возникает акустический канал, по которому звуковые колебания в среднем диапазоне частот распространяются на расстояние в несколько тысяч километров.
Нет комментариев