Именно в этом диапазоне скрываются захватывающие возможности. Впервые о них заговорил неугомонный выдумщик Ричард Фейнман. Его лекция «There is plenty room in the bottom!» («Внизу полным-полно места!») 1959 года стала настоящим пророчеством наступающего века нанотехнологий. И пусть с высоты второго десятилетия XXI века некоторые тезисы выступления Фейнмана звучат наивно, в целом оно на редкость точно выражает преимущества и сложности работы в наномире.
Пожалуй, самое очевидное и интуитивно понятное преимущество миниатюризации технологий до наномасштабов — это рост их производительности и уменьшение количества потраченных ресурсов. Пусть наше гипотетическое устройство имеет форму куба. При уменьшении его линейных размеров в 10 раз его объем, а значит, и количество необходимого сырья уменьшится в 1000 раз! Даже если из-за уменьшения размера производительность прибора упадет — не страшно, ведь в тот же объем можно будет запихать в тысячу раз больше новых устройств.
Эта идея нашла свое воплощение во взрывном развитии микроэлектроники, так сильно поменявшем мир за последние десятилетия. В том же 1959 году, за несколько месяцев до исторического выступления Фейнмана, физик-электронщик Жан Эрми из калифорнийской Fairchild Semiconductor придумал технологию создания планарного транзистора. Этот момент можно считать началом похода в наномир, темпы которого до недавнего времени описывались знаменитым «законом Мура». Число транзисторов на кристаллах процессоров безудержно росло, удваиваясь приблизительно каждые два года. В 1971 году размер полупроводника интегральной микросхемы составлял 10 микрометров. Сегодня же микроэлектронщики вплотную подошли к внедрению 7-нанометровых полупроводников.
Естественно, спуск в бездну наномира не может продолжаться вечно. Упрямые законы квантовой механики ограничивают минимальный размер полупроводника 1,5−2 нанометрами, что всего лишь на порядок больше размеров большинства атомов. Похоже, что этого нанодна микроэлектроника достигнет во второй половине следующего десятилетия, после чего для качественного роста производительности придется уже внедрять вычислительные устройства на абсолютно других физических принципах. Но это будет уже совсем другая история.
На нанометровых же масштабах законы квантовой механики периодически напоминают о себе, но еще не вступают в свои права. Хозяевами поля все еще остаются знакомые нам правила старой доброй механики. Однако и у них появляются свои особенности.
При уменьшении размеров соотношение массы и площади поверхности резко смещается в сторону последней, из-за чего нанообъект практически полностью лишается инерции, да и действие силы тяжести на его ничтожную массу ощущается крайне умеренно. Поэтому нанообъекты, в сравнении со своими полноразмерными прототипами, будут иметь намного большую относительную прочность. Ведь прочность детали пропорциональна площади ее сечения, а масса — объему.
А вот тепловое движение, наоборот, выйдет на первый план. Из-за него все атомы или отдельные молекулы, составляющие нашу наномашину, будут постоянно колебаться и раскачиваться друг относительно друга. Так что о твердых механических деталях в таком масштабе можно забыть. Молекулы среды, захваченные броуновским движением, будут постоянно наносить нашей машине удары в самых непредсказуемых направлениях, сбивая ее с курса, а то и просто отбрасывая в случайном направлении. В этом есть и свои плюсы, например, заброшенный в стратосферу нанозонд будет свободно парить там долгие месяцы и годы, пока не опустится до уровня облаков и не угодит в микрокаплю зарождающегося дождя.
В жидкой среде проблемы тепловых колебаний и броуновского движения встанут еще более серьезно. Как сказал в свой нобелевской лекции Бернард Феринга, в наномире перед нами не стоит вопрос, как достичь движения, но стоит вопрос, как его контролировать.
Существует как минимум два подхода к решению этой задачи. Первый — попытаться сократить тепловое движение. Именно этим путем пошли создатели молекулярных наноавтомобилей.
Видео:
https://thumbs.gfycat.com/ApprehensiveConventionalDiplodocus-mobile.mp4
Нет комментариев