Итак, какая схема снаббера предпочтительна?
Применение RCD-снабберов, показанных на рис. 1 и 2, перешло в область инверторов на транзисторах с полевым управлением из преобразователей на основе тиристоров и биполярных транзисторов и в виде защитного элемента собственно транзистора неприменимо в принципе.
RC-снабберы не лучше простого С-снаббера (поскольку это не RC-фильтр); резистор только ухудшает его функции и для пленочных, тем более специализированных снабберных, конденсаторов не нужен. В тиристорных преобразователях — да, резистор зачастую необходим, здесь мощность импульса значительно больше, но в транзисторных — нет, за исключением разве что уникальных изделий.
С-снаббер, устанавливаемый на каждом ключе, ничем не превосходит одиночный конденсатор, установленный на шинах питания, преимуществ в такой схеме нет. Но есть минусы: зависимость номинала конденсатора от нагрузки, что значительно усложняет расчет схемы, а значит, снижает и надежность.
Для защиты от перенапряжения необходимо и использование активного ограничителя — супрессора, устанавливаемого аналогично между шинами питания.
Таким образом, наилучший снаббер — это установленные между «+U» и «–U» конденсатор и параллельно ему последовательная сборка (до нужного напряжения) супрессоров. Если полумосты по топологии разнесены (например, несколько полумостов в отдельных модулях), такая сборка ставится на каждом полумосте. Если сборка инвертора в одном корпусе, то устанавливается один снаббер. Все прочие схемы избыточны и в конечном счете, кроме ухудшения защитных функций и усложнения конструкции, ничего не привносят.
Тип конденсатора — обязательно пленочный К73-17 или К78-2; керамические конденсаторы, а тем более чип-конденсаторы категорически не подходят. Причина тому не в паразитных составляющих данных типов конденсаторов (это мнение распространено, но ошибочно), а просто в большей устойчивости пленочных конденсаторов к импульсной перегрузке. Специализированные снабберные конденсаторы (например, серии В32682–В32686 от Epcos и т. п.) фактически представляют собой все тот же пленочный К73-17, только побольше и с выводами потолще (для уменьшения индуктивности); принципиальных отличий нет.
Номинал конденсатора составляет 0,1–0,33 мкФ, в подавляющем большинстве случаев 0,22 мкФ. Большие или меньшие номиналы, конечно, применяются, но гораздо реже и «по месту», например при очень мощных обратных выбросах, в преобразователях на частоту 200 кГц и т. п. В этом, к слову, еще одно преимущество данной схемы снаббера: номинал не зависит от характеристик нагрузки, конденсатор никак не привязан к фазным выходам. Сродни конденсаторам, устанавливаемым по питанию микросхем: в любых схемах, старых и новых, СВЧ и DC, любые микросхемы, почти всегда 0,1 мкФ. Аналогично и здесь: почти всегда 0,22 мкФ.
Так как же должен выглядеть оптимальный снаббер, по крайней мере для первого включения преобразователя? Пленочный конденсатор по питанию инвертора 0,22 мкФ и параллельно ему супрессор. Если силовых модулей несколько, то ставится на каждый полумост по такой сборке. Все. Доказательством такого подхода служит опыт производителей силовых блоков инверторов, таких как Powerex, APS, Infineon. Во всех этих силовых инверторах применяются полумосты в «стандартном» конструктиве 62 мм, и на каждом полумосте стоит один конденсатор по питанию типа В32686 емкостью 0,22 мкФ и параллельно ему супрессоры. Другие схемы не применяются. Автор по крайней мере других вариантов не встречал. А это преобразователи, заметьте, работающие со всевозможной нагрузкой, в различных применениях, мощностью до десятков и сотен киловатт. И тогда что уж говорить о типовом инверторе на пару-тройку киловатт? Отсюда и утверждение: «снаббер — это просто»!
Нет комментариев