Вывод 1
Это не инвертирующий (положительный) вход усилителя ошибки 1.
Если входное напряжение на нём будет ниже, чем напряжение на выводе 2, то на выходе этого усилителя ошибки 1, напряжения не будет (выход будет иметь низкий уровень) и он не будет оказывать никакого влияния на ширину (скважность) выходных импульсов.
Если на этом выводе напряжение будет выше, чем на выводе 2, то на выходе этого усилителя 1, появится напряжение (выход усилителя 1, будет иметь высокий уровень) и ширина (скважность) выходных импульсов будет уменьшаться тем больше, чем выше выходное напряжение этого усилителя (максимум 3,3 вольта).
Вывод 2
Это инвертирующий (отрицательный) вход усилителя сигнала ошибки 1.
Если входное напряжение на этом выводе выше, чем на выводе 1, на выходе усилителя ошибки напряжения не будет (выход будет иметь низкий уровень) и он не будет оказывать никакого влияния на ширину (скважность) выходных импульсов.
Если же напряжение на этом выводе ниже, чем на выводе 1, выход усилителя будет иметь высокий уровень.
Усилитель ошибки, это обычный ОУ с коэффициентом усиления порядка = 70..95дБ по постоянному напряжению, (Ку = 1 на частоте 350 кГц). Диапазон входных напряжений ОУ простирается от -0.3В и до напряжения питания, минус 2В. То есть максимальное входное напряжение должно быть ниже напряжения питания минимум на два вольта.
Вывод 3
Это выходы усилителей ошибки 1 и 2, соединённых с этим выводом через диоды (схема ИЛИ). Если напряжение на выходе какого-либо усилителя меняется с низкого на высокий уровень, то на выводе 3 оно также переходит в высокий.
Если напряжение на этом выводе превысит 3,3 В, то импульсы на выходе микросхемы пропадают (нулевая скважность).
Если напряжение на этом выводе близко к 0 В, тогда длительность выходных импульсов (скважность) будет максимальна.
Вывод 3 обычно используется для обеспечения ОС усилителей, но если это необходимо, то вывод 3 может быть использован и в качестве входного, для обеспечения изменения ширины импульсов.
Если напряжение на нем высокое (> ~ 3,5 В), то импульсы на выходе МС будут отсутствовать. Блок питания не запустится ни при каких обстоятельствах.
Вывод 4
Он управляет диапазоном изменения "мёртвого" времени (англ. Dead-Time Control), в принципе это та же самая скважность.
Если напряжение на нем будет близко к 0 В, то на выходе микросхемы будут, как минимально возможные, так и максимальные по ширине импульсы, что соответственно может задаваться другими входными сигналами (усилители ошибок, вывод 3).
Если напряжение на этом выводе будет около 1,5 В, то ширина выходных импульсов будет в районе 50% от их максимальной ширины.
Если напряжение на этом выводе превысит 3,3 В, то импульсы на выходе МС будут отсутствовать. Блок питания не запустится ни при каких обстоятельствах.
Но стоит не забывать, что при увеличении "мёртвого" времени, диапазон регулировки ШИМ будет уменьшаться.
Изменяя напряжение на выводе 4, можно задавать фиксированную ширину "мёртвого" времени (R-R делителем), осуществить в БП режим мягкого старта (R-C цепочкой), обеспечить дистанционное выключение МС (ключ), а также можно использовать этот вывод, как линейный управляющий вход.
Давайте рассмотрим (для тех, кто не знает), что такое "мёртвое" время и для чего оно нужно.
При работе двухтактной схемы БП, импульсы поочерёдно подаются с выходов микросхемы на базы (затворы) выходных транзисторов. Так как любой транзистор - элемент инерционный, он не может мгновенно закрыться (открыться) при снятии (подаче) сигнала с базы (затвора) выходного транзистора. И если на выходные транзисторы подавать импульсы без "мёртвого" времени (то есть с одного импульс снять и на второй сразу подать), может наступить такой момент, когда один транзистор не успеет закрыться, а второй уже открылся. Тогда весь ток (называется сквозной ток) потечёт через оба открытых транзистора минуя нагрузку (обмотку трансформатора), и так как он ни чем не будет ограничен, выходные транзисторы мгновенно выйдут из строя.
Чтобы такое не произошло, необходимо после окончания одного импульса и до начала следующего - прошло какое-то определённое время, достаточное для надёжного закрытия того выходного транзистора, со входа которого снят управляющий сигнал.
Это время и называется "мёртвым" временем.
Да, ещё если посмотреть рисунок с составом микросхемы, то мы видим, что вывод 4 соединён со входом компаратора регулировки мертвым временем (DA1) через источник напряжения, величиной 0,1-0,12 В. Для чего это сделано?
Это как раз и сделано для того, чтобы максимальная ширина (скважность) выходных импульсов никогда не была равна 100%, для обеспечения безопасной работы выходных (выходного) транзисторов.
То есть если "посадить" вывод 4 на общий провод, то на входе компаратора DA1 всё равно не будет нулевого напряжения, а будет напряжение как раз этой величины (0,1-0,12 В) и импульсы с генератора пилообразного напряжения (ГПН) появятся на выходе микросхемы только тогда, когда их амплитуда на выводе 5, превысит это напряжение. То есть микросхема имеет фиксированный максимальный порог скважности выходных импульсов, который не превысит для однотактного режима работы выходного каскада 95-96%, и для двухтактного режима работы выходного каскада - 47,5-48%.
Вывод 5
Это вывод ГПН, он предназначен для подключения к нему времязадающего конденсатора Ct, второй конец которого подсоединяется к общему проводу. Ёмкость его выбирается обычно от 0,01 мкФ до 0,1 мкФ, в зависимости от выходной частоты ГПН импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества.
Выходную частоту ГПН можно как раз контролировать на этом выводе. Размах выходного напряжения генератора (амплитуда выходных импульсов) где-то в районе 3-х вольт.
Вывод 6
Тоже вывод ГПН, предназначенный для подключения к нему врямя-задающего резистора Rt, второй конец которого подсоединяется к общему проводу.
Величины Rt и Ct определяют выходную частоту ГПН, и рассчитываются по формуле для однотактного режима работы;
формула1
Для двухтактного режима работы формула имеет следующий вид;
формула2
Для ШИМ-контроллеров других фирм, частота рассчитывается по такой же формуле, за исключением - цифру 1 необходимо будет поменять на 1,1.
Вывод 7
Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.
Вывод 8
В составе микросхемы имеется выходной каскад с двумя выходными транзисторами, которые являются ее выходными ключами. Выводы коллекторов и эмиттеров этих транзисторов свободные, и поэтому в зависимости от необходимости, эти транзисторы можно включать в схему для работы как с общим эмиттером, так и с общим коллектором.
В зависимости от напряжения на выводе 13, этот выходной каскад может работать как в двухтактном режиме работы, так и в однотактном. В однотактном режиме работы эти транзисторы можно соединять параллельно для увеличения тока нагрузки, что обычно и делают.
Так вот, вывод 8, это вывод коллектора транзистора 1.
Вывод 9
Это вывод эмиттера транзистора 1.
Вывод 10
Это вывод эмиттера транзистора 2.
Вывод 11
Это коллектор транзистора 2.
Вывод 12
К этому выводу подсоединяется «плюс» источника питания TL494CN.
Вывод 13
Это вывод выбора режима работы выходного каскада. Если этот вывод подсоединить к общему проводу, выходной каскад будет работать в однотактном режиме. Выходные сигналы на выводах транзисторных ключей будут одинаковыми.
Если подать на этот вывод напряжение +5 В (соединить между собой выводы 13 и 14), то выходные ключи будут работать в двухтактном режиме. Выходные сигналы на выводах транзисторных ключей будут противофазны и частота выходных импульсов будет в два раза меньше.
Вывод 14
Это выход стабильного Источника Опорного Напряжения (ИОН), С выходным напряжением +5 В и выходным током до 10 мА, которое может быть использовано в качестве образцового для сравнения в усилителях ошибки, и в других целях.
Вывод 15
Он работает точно так же, как и вывод 2. Если второй усилитель ошибки не используется, то вывод 15 просто подключают к 14-му выводу (опорное напряжение +5 В).
Вывод 16
Он работает так же, как и вывод 1. Если второй усилитель ошибки не используется, то его обычно подключают к общему проводу (вывод 7).
С выводом 15, подключенным к +5 В и выводом 16, подключенным к общему проводу, выходное напряжение второго усилителя отсутствует, поэтому он не оказывает никакого влияния на работу микросхемы.
Принцип работы микросхемы.
Так как же работает ШИМ-контроллер TL494.
Выше мы подробно рассмотрели назначение выводов этой микросхемы и какую функцию они выполняют.
Если всё это тщательно проанализировать, то из всего этого становится ясно, как работает эта микросхема. Но я ещё раз очень кратко опишу принцип её работы.
При типовом включении микросхемы и подаче на неё питания (минус на вывод 7, плюс на вывод 12), ГПН начинает вырабатывать пилообразные импульсы, амплитудой около 3-х вольт, частота которых зависит от подключенных С и R к выводам 5 и 6 микросхемы.
Если величина управляющих сигналов (на выводе 3 и 4) меньше 3-х вольт, то на выходных ключах микросхемы появляются прямоугольные импульсы, ширина которых (скважность) зависит от величины управляющих сигналов на выводе 3 и 4.
То есть в микросхеме идёт сравнение положительного пилообразного напряжения с конденсатора Ct (C1) с любым из двух управляющих сигналов.
Логические схемы управления выходными транзисторами VT1 и VT2, открывают их только тогда, когда напряжение пилообразных импульсов выше сигналов управления. И чем больше эта разница, тем шире выходной импульс (больше скважность).
Управляющее напряжение на выводе 3 в свою очередь зависит от сигналов на входах операционных усилителей (усилителей ошибок), которые в свою очередь могут контролировать выходное напряжение и выходной ток БП.
Таким образом, увеличение или уменьшение величины какого либо управляющего сигнала, вызывает соответственно линейное уменьшение или увеличение ширины импульсов напряжения на выходах микросхемы.
В качестве управляющих сигналов, как уже было сказано выше, может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи непосредственно с вывода 3.
Теория, как говорится теорией, но гораздо будет лучше всё это посмотреть и "пощупать" на практике, поэтому соберём на макетной плате следующую схемку и посмотрим воочию, как всё это работает.
Комментарии 3