СМЕШАННЫЙ ЭКИПАЖ добровольцев на борту «Олимпии». Места для гребцов расположены на небольшом расстоянии друг от друга. Гребцы сидят на неподвижных, обтянутых кожей скамьях. Весла сделаны из орегонской сосны.
Длинный корпус триремы должен был выдерживать растягивающие и изгибающие напряжения, которые приближались к предельным для деревянных конструкций. Такой корпус не имел палубы, которая выполняла бы роль верхнего стягивающего элемента, и тем самым предотвращала бы прогибание киля в середине и возможное его разламывание пополам. На триремах вдоль всего судна туго натягивали льняные канаты (так называемые гипозоматы), которые затем дополнительно закручивали для усиления натяжения, с тем чтобы уменьшить растягивающие напряжения вдоль верхних кромок корпуса. Во время опытов на небольшой модели корабля обнаружили, что такие канаты под постоянной нагрузкой провисают и неожиданно рвутся, поэтому вместо них было решено использовать канаты из искусственного волокна. Из-за недостатка времени не удалось решить некоторые проблемы, которые возникали при использовании таких канатов на модели в натуральную величину, поэтому временно использовали стальные тросы.
ОСНОВНЫМ достоинством триремы была ее быстроходность. В процессе реконструкции обнаружили, что длина и форма корпуса корабля в полной мере способствовали преодолению различных видов сопротивления, которые мешали его движению в воде. Для всех судов, кроме современных, оснащенных мощными двигателями, основные помехи обусловлены вязкостью воды (сопротивлением трения). Она пропорциональна смоченной площади корпуса и его шероховатости, являясь одновременно функцией скорости (пропорционально зависящей от ее величины, возведенной в степень 1,825). Как показали Фоули и Зёдель, волны, возникающие при движении судна по воде, являются вторым источником сопротивления. На малом ходу влияние таких волн пренебрежимо мало, на большой же скорости на них приходится уже основная часть суммарного сопротивления.
Волновое сопротивление зависит от формы корпуса, его водоизмещения, а также от длины и скорости корабля. При перемещении корабля в его носовой и кормовой частях, а также вокруг него непрерывно образуются волны определенного профиля. Они перемещаются вместе с кораблем, начинаясь с гребня в носовой, и подошвы в кормовой части. При увеличении скорости корабля носовые и кормовые волны чередуются между собой, попеременно находясь, то в одной, то в разных фазах. Волновое сопротивление увеличивается со скоростью, и быстрее всего в тот момент, когда носовые волны находятся в фазе с кормовыми и усиливают их. В этом режиме для увеличения скорости корабля приходится затрачивать очень большую мощность. И наоборот, когда носовые волны находятся в противофазе с кормовыми, последние частично гасятся, сопротивление возрастает не столь быстро, и корабль легче увеличивает скорость.
Таким образом, длина судна, а также его скорость влияют на взаимодействие носовых и кормовых волн и тем самым на волновое сопротивление. Примечательно, что при данной длине триремы и скорости, близкой к максимальной (9,5 – 11 узлов), волновое сопротивление увеличивается лишь незначительно, и тогда трирема под веслами способна на короткий спринтерский рывок. По моим расчетам, очередное медленное повышение волнового сопротивления наступает при увеличении длины корабля примерно на половину. В этом случае на нем должно быть примерно 250 гребцов. При всем этом скорость увеличилась бы лишь незначительно. Вообще же такая попытка обречена на неудачу, поскольку невозможно добиться такой прочности на изгиб, при которой столь длинный корабль не развалился бы на части. Итак, трирема имела именно такую длину, при которой она могла развивать максимальную скорость.
ХОДОВЫЕ качества триремы определяются, безусловно, не только ее размерами, формой и конструкцией, но также и мощностью, развиваемой 170 гребцами, возможным соотношением между требуемой эффективной мощностью и скоростью корабля, а также динамическими характеристиками весел, которые управляются с неподвижных сидений на идущем с большой скоростью корабле. Для движения триремы с максимальной скоростью необходимо, чтобы весла имели строго заданную массу, правильную балансировку, соответствующую площадь лопастей и определенное “передаточное число”, т. е. отношение длины наружной части весла от его шкворня к длине внутренней части. Для получения хороших весел все эти параметры имеют первостепенное значение, что известно каждому гребцу – участнику спортивных гонок. Это в равной степени справедливо и для весел, использовавшихся на триремах. В большинстве гипотетических проектов по восстановлению трирем их авторы, пренебрегая конструкцией весел, предъявляли чрезмерные требования к самим гребцам.
Из инвентарных описей военно-морских верфей в древних Афинах, некоторые из которых были выгравированы на найденных в Пирее каменных табличках, известно, что в третьей четверти IV в. до н. э. весла трирем имели длину 9 и 9,5 локтей (соответственно 4,0 и 4,22 м). На каждом таком весле сидел один гребец, а более короткие весла использовались по концам судна. По сведениям римского инженера и архитектора Витрувия (I в. до н. э.), расстояние между двумя соседними веслами было равно двум локтям (0,888 м). Кроме того, два древних изображения дают, как полагают, весьма достоверную схему расположения гребцов. На ленормановском рельефе из Акрополя, выполненном на известняке изображении V в. до н. э., приведен частичный профиль триремы, а на вазе из Руво, аттическом кратере с красными фигурами, изображены аргонавты на борту корабля, который Моррисон определяет как трирему. Видны отверстия для весел нижних рядов, а также кронштейны выносных уключин для верхних весел.
Расчеты показали, что при максимально возможном размахе весельных рукоятей 0,85 м и при 50 гребках в минуту, обеспечивающих эффективную работу весел заданной длины, для достижения скорости 9,5 узлов передаточное число весел должно быть достаточно большим, порядка 3:1. Кроме того, для обеспечения достаточной стабильности полностью груженому кораблю с центром тяжести 0,8 м над ватерлинией ширина корпуса на ее уровне должна быть около 3,7 м. Самый нижний ряд весел должен находиться на высоте не менее 0,4 м над водой, что обеспечивает их эффективную работу при нормальном состоянии морской поверхности. (Но даже в этом случае отверстия для этих весел приходилось защищать кожаными рукавами.) Эксперименты, проведенные на гребной модели в натуральную величину, показали, что весла верхнего ряда должны иметь наклон относительно горизонтали под углом менее 35°. При большем наклоне весла работают менее эффективно.
Указанные характеристики весельного механизма позволили разрешить давний спор относительно того, надо ли было для достижения максимальной скорости корабля дополнительно использовать паруса. Ответ был отрицательным. За исключением случаев, когда имел место необычный ветровой режим, корабль под парусами испытывал бы очень сильный крен, рукояти весел у гребцов нижнего ряда упирались бы в колени, и лопасти нельзя было бы поднять над волнами.
Нет комментариев