Из учебников физики о Луиджи (или, в латинизированной форме, Алоизии) Гальвани известно примерно следующее: итальянский врач, анатом и физиолог конца XVIII века; на явление, получившее название "опыт Гальвани", он наткнулся случайно и не смог правильно объяснить, поскольку исходил из ложной гипотезы о существовании некоего животного электричества. А вот разобраться в явлении и создать полезное устройство на его основе смог физик Алессандро Вольта.
Казалось бы, картина ясная: анатом резал лягушек (а что еще умеет делать анатом?), случайно наткнулся на то, что лапка дергается под действием тока, и ничего не понял - не физик, куда ему понимать суть вещей. Вольта, физик, все тщательно повторил, все правильно объяснил и даже подтвердил практикой. А то, что анатом и врач то ли из упрямства, то ли по недомыслию продолжал настаивать на своем, окончательно плохо его характеризует.
Непонятно, почему человечество оказалось столь благосклонным к этому врачу, что присвоило его имя и токам проводимости, и целой области физики, и прибору для измерения тока, и важнейшему технологическому процессу электрохимического нанесения металлических покрытий, и даже изобретенным Вольтой источникам тока. Ни с одним из самых известных физиков - ни с Ньютоном, ни с Декартом, ни с Лейбницем, ни с Гюйгенсом, ни с любимцем классической физики Джеймсом Клерком Максвеллом - не связано такое количество терминов.
Но вот что забавно: когда речь идет об областях не физических, термины, связанные с именем Гальвани, вполне респектабельны и устойчивы: гальванотерапия, гальваническая ванна, гальванотаксис. Если же дело касается физики, то на всякий гальванический термин есть термин антигальванический: не гальванометр, а амперметр; не гальванический ток, а ток проводимости; не гальванический элемент, а химический источник тока. Чем ортодоксальнее учебник физики, тем меньше вероятность встретить в нем не только какое-либо упоминание научных заслуг Гальвани, но и гальваническую терминологию. Официальные власти империи сэра Исаака Ньютона, или "цеховики", как называл их Гёте, явно отказывают в гражданстве Луиджи Гальвани, но кто-то постоянно пишет на стенах храма науки его имя и напоминает о его существовании.
Попробуем разобраться, в чем тут дело. Гальвани, прежде всего, физиолог, но в конце XVIII века это слово воспринималось буквально: физика - природа, логия - ее изучение, физиолог - изучатель природы, или, по-русски, естествоиспытатель. К началу описываемых событий в лаборатории Гальвани находились электрофорная машина, электрофор конструкции Вольты, электроскоп, сделанный в соответствии с указаниями Вольты, лейденская банка, магический квадрат (другой вариант конденсатора), громоотвод, то есть весь арсенал средств для исследования электричества, которым располагала физика того времени.
Что касается занятий врачеванием и анатомией, то медицина была весьма распространенным средством существования естествоиспытателей того времени. Из множества примеров приведу основателя гидродинамики Даниила Бернулли, который писал свои знаменитые уравнения для объяснения системы кровообращения и был в один из периодов своей жизни профессором анатомии Петербургской академии наук. Кроме того, изучение электричества было теснейшим образом связано с медициной. Начало этим исследованиям положил врач королевы Елизаветы - Гильберт, от которого и пошла вся янтарная терминология и который в 1600 году издал большой трактат по магнетизму и электричеству.
Теперь о случайности открытия. С указания на случай начинает свой "Трактат о силах электричества при мышечном движении" сам Гальвани: "Итак, я считал, что сделаю нечто ценное, если я кратко и точно изложу историю моих открытий в таком порядке и расположении, в каком мне их доставили отчасти случай и счастливая судьба, отчасти трудолюбие и прилежание. Я сделаю это не только для того, чтобы мне не приписывалось больше, чем счастливому случаю, или случаю больше, чем мне, но для того, чтобы дать как бы факел тем, которые пожелают пойти по тому же пути исследования..."
Согласно мнению большинства историков науки, случай явился в лице молодой жены Гальвани - Лючии Галеацци, дочери учителя Гальвани, которая крутила ручку электрофорной машины, в то время как ассистент препарировал лягушку. Лапка билась под скальпелем, и наблюдательная женщина заметила, что судороги случаются тогда, когда между шарами машины проскакивает искра. Она обратила внимание мужа на это совпадение, и революция в физике началась.
Описываемые события произошли в 1780 году, а трактат вышел только в 1791-м, и за эти 11 лет было поставлено огромное число экспериментов, в ходе которых ярко проявился удивительнейший талант Гальвани обращать внимание на существенные детали и выносить на свет сокрытое. Прежде всего, Гальвани установил, что для устойчивой повторяемости явления необходимо, чтобы экспериментатор касался либо металлических заклепок скальпеля, либо его металлического острия, "открывая доступ электрическому флюиду". Затем из опыта был исключен экспериментатор со скальпелем - его заменили на очень длинную проволоку, висящую на шелковых нитях и соединенную с нервом. Лапку при этом электрически соединяли с землей. В меньшей степени, но все-таки проявлялся эффект и в том случае, когда проводник присоединяли только к нерву или только к мышце. Гальвани провел один из первых в истории человечества экспериментов по электромагнитной связи. При этом требовались определенные анатомические умения, чтобы обеспечить полную электрическую изоляцию нерва от мышц. Дальность связи была невелика, но, во всяком случае, удалось получить устойчивые сокращения лапок при расположении электрофорной машины в соседней комнате. (Кстати говоря, более чем через сто лет, в 1923 году, лягушачью лапку применяли в качестве приемника в первых опытах по телеграфии на большие расстояния.) Препарированную лапку подвешивали на проволочках или вместе с антенной помещали в герметичный стеклянный сосуд и откачивали воздух - эффект сокращения все равно возникал. Малейшее же нарушение электрической цепи "проводник - нерв - мышца - проводник" приводило к остановке сокращений.
Другая серия опытов состояла в замене искусственного электричества от электрофорной машины и лейденских банок на естественное грозовое электричество. Лапку соединяли с громоотводом, и во время грозы наблюдались сокращения при разрядах молний и при прохождении туч. Гальвани обратил внимание на то, что в некоторых случаях одна вспышка молнии вызывала несколько сокращений.
Наконец, были предприняты исследования влияния атмосферного электричества, для чего лапки в ясную погоду вывесили на медных крючках на балконе с железными перилами. Гальвани стал прижимать медные крючки к железной решетке, и тут впервые заметил сокращение лапки при контакте разнородных металлов. Этого оказалось достаточно, чтобы придать экспериментам новое направление и перенести опыты обратно в комнату. Гальвани с изумлением убеждается в том, "что сокращения были различны сообразно различию металлов, именно в случае одних - сильнее и быстрее, а в случае других - слабее и медленнее". Было чему удивляться: до этого никаких различий электричес ких свойств металлов физики не отмечали.
Теперь опыты состояли в замыкании нерва с наружной стороной мышцы дугой из металлов. Пытливый экспериментатор выявил, что "если вся дуга железная или крючок железный и если также проводящая пластина железная, то чаще всего сокращения либо отсутствуют, либо весьма незначительны. Если, однако, один из этих предметов железный, а другой - медный или же, что гораздо лучше, серебряный, то сокращения немедленно становились гораздо больше и гораздо продолжительнее".
Осторожно высказав "некоторое подозрение об электричестве, свойственном самому животному", Гальвани не торопится считать это доказанным. Лишь подробно описав множество опытов так, чтобы желающие могли повторить их, он наконец объявляет мышцу "местом пребывания исследованного нами электричества".
Схемы опытов постоянно оптимизируются с тем, чтобы вызвать устойчивый эффект наименьшим количеством электричества. Существенным оказывается покрытие нервов тонкой металлической, лучше всего оловянной, фольгой. При этом сокращение наблюдается даже без замыкающей дуги при одном лишь соприкосновении проводящего тела с обложенными фольгой нервами. Воздействие на нервы проявляется гораздо сильнее, чем на мышцы. Гальвани устанавливает, "что все части рассеченных животных так или иначе свободно проводят и легко пропускают электричество, вероятно вследствие влажности, которой они пропитываются".
Трактат Гальвани написан в замечательной манере, при которой главное внимание уделяется не могуществу вспомогательного средства, например математического аппарата, не философским или теологическим ассоциациям, а аккуратному описанию постановки и результатов опытов и непосредственному движению мысли, выраженной естественным языком.
Он рассматривает мышцу как батарею лейденских банок, указывая, что электричество сосредоточено на поверхности между внутренней полостью мышечных волокон и наружной. В качестве существенной детали этой гипотезы Гальвани предлагает принять во внимание, "что мышечное волокно, хотя на первый взгляд и очень простое, состоит, однако, из различных как твердых, так и жидких частей, что обусловливает в нем немалое разнообразие веществ".
Широкими мазками набрасывает он картину возможных методов электромедицины и, главное, роли электричества в функционировании живого. Конечно, текст не свободен от фраз, вызывающих улыбку сегодняшнего читателя, например: "...болезни поражают особенно стариков, так как у них обильнее должны накопляться массы испорченного животного электричества..." Следует помнить, что в те времена электричество считали особой жидкостью, имеющей характерные вкус и запах.
Теперь о "ложной гипотезе о животном электричестве". Начнем с того, что ко времени написания трактата Гальвани существование животного электричества было уже не гипотезой, а фактом: в 1773 году Уолш с помощью Кавендиша окончательно доказал электрическую природу разрядов электрических рыб. По мнению Гальвани, разряды электрических органов рыб отличаются от электрических сокращений мышц лягушек только количественно, но не качественно. Весь мир пронизан электричеством, в каждой лягушачьей лапке, в каждом живом органе текут слабые гальванические токи, вызывающие поразительные физиологические эффекты. Представлялась более чем очевидной гипотеза о том, что мозг экстрагирует электрический флюид из крови, а легкие всасывают электричество из атмосферы (не зря в грозу так легко дышится).
Тонкая электрическая жидкость, неразличимая ни в какие микроскопы, распространяется по нервам, питает все члены и обеспечивает функционирование всех чувств. Если научиться отворять и затворять электричество, как кровь, заменять тухлое электричество свежим, то в медицине состоится большой скачок. Казалось бы, опыты Гальвани убедительно подтверждали такую упрощенную схему. Главным становился вопрос о том, где брать свежее электричество.
Натуральные разряды электрических рыб в те времена ценились крайне высоко: есть сведения, что в Англии желающие платили 12 шиллингов 6 пенсов за оцепеняющий разряд угря, другие называют более дешевые разряды - по 2 шиллинга, но, возможно, цены колебались. В любом случае этот путь для массовой медицины не годился: больно хлопотно ездить к пациентам с электрическим угрем в саквояже-аквариуме. Вот почему такой восторг вызвал Вольтов столб - искусственный аналог электрического органа.
По материалам В. Ольшанского
Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Нет комментариев