Глобальная карта инсоляции
Величина инсоляции зависит от высоты Солнца над горизонтом, от географической широты места, от угла наклона земной поверхности, от ориентации земной поверхности по отношению к сторонам горизонта.
Показатель инсоляции влияет на множество областей нашей жизни, начиная от комфортности проживания и заканчивая энергетикой.
Инсоляция и комфорт проживания
Комфорт проживания человека в том или ином помещении во многом связан с естественным освещением, которое имеет место в данном помещении в течение суток. Однако показатели инсоляции жилых помещений и уровень освещенности не являются тождественными друг другу.
Следует заметить, что инсоляция – это не только количество солнечного света, попадающего в жилое помещение в течение суток или, как принято при нормативных расчетах, в течение календарного нормативного периода, это еще и наличие либо отсутствие фотобиологического эффекта – естественное облучение помещений оказывает бактерицидное воздействие, то есть, если помещение хорошо освещается солнцем, оно является куда как более полезным для здоровья.
Исследования показали, что для эффективного воздействия такого рода достаточно, чтобы инсоляция помещения составляла около 1,5 часов в день, причем даже не комнаты, а подоконника.
С целью обеспечения комфорта проживания и здоровья населения, устанавливаются санитарно-гигиенические нормы уровня инсоляции жилых помещений, в соответствии с которыми ведется строительство жилых и административных зданий (нормирование можно проверить в разделах, посвященных инсоляции, СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях», а также СанПиН 2.2.1/2.2.2.1076-01 «Гигиенические требования к инсоляции и солнцезащите помещений жилых и общественных зданий и территорий»).
Санитарные нормы и правила устанавливают нормативную продолжительность инсоляции в единицах времени, которая должна обеспечиваться для соответствующих зданий и сооружений.
Нормативная инсоляция зависит от географической широты. Выделяется три условных зоны – северная(севернее 58 град. с.ш.) , центральная (58 град.с.ш. – 48 град.с.ш.) и южная (южнее 48 град.с.ш.) – для которых расчетным образом определяется продолжительность инсоляции. В связи с этим особое значение приобретают методы расчета инсоляции.
В настоящее время существует несколько методов расчета инсоляции, которые применяются для расчета инсоляции жилых помещений в градостроительстве: геометрические и энергетические. С помощью геометрических методов определяется направление и площадь сечения потока солнечных лучей в определенное время дня и/или года. С помощью энергетических методов определяется плотность потока солнечных лучей, облученность и экспозиция поверхности в различных единицах измерения (эти единицы измерения могут быть световые, бактерицидные, эритемные и так далее).
Расчет инсоляции жилых помещений проводится как вручную, так и с помощью специализированных программ. В России в настоящее время используется «Солярис» — программа для расчета инсоляции. Также активно применяется японская программа MicroShadow for ArchiCA, использующая ручной метод ортогонального проецирования. Однако, некоторые специалисты утверждают, что данные программы не позволяют сделать достаточно корректный расчет, на который можно было бы с уверенностью опираться при проектировании зданий и сооружений, и в результате уровень инсоляции может не соответствовать желаемому и необходимому для комфортного проживания. Например, Д.В.Бахарев предлагает использовать программу, основанную на методе центрального проецирования вместо ортогонального.
Инсоляция и солнечная энергетика
Во время постоянного подорожания энергоносителей традиционного вида особое значение получает альтернативная энергетика, одной из важнейших частей которой является использование солнечной энергии, то есть – солнечная энергетика.
Этот вид энергетики основан на использовании солнечной энергии с преобразованием ее в электрическую и/или тепловую энергию с помощью соответствующих приборов. Для улавливания энергии солнца используются фотоэлектрические панели, и их эффективность напрямую зависит от уровня инсоляции в данной местности.
Очевидно, что чем выше инсоляция, тем эффективнее работают гелиопанели, так как на них поступает больше энергии. Современные солнечные панели оснащены двигателями, которые позволяют им разворачиваться и следовать за солнцем в течение светового дня (наподобие того, как поворачиваются за солнцем многие цветы) – это повышает КПД солнечных электростанций.
К сожалению, солнечные электростанции имеют существенные ограничения: в темное время суток они не работают, также значительно снижается их эффективность (иногда до нуля) в туманные и пасмурные дни. Поэтому обычно такие электростанции оснащаются «солнечными аккумуляторами», которые запасают энергию в светлое время суток и отдают в темное, таким образом обеспечивается непрерывность работы солнечных электростанций.
В южных широтах, где уровень инсоляции высок практически в течение всего календарного года, гелиоэлектростанции могут быть использованы сами по себе, в то время как в тех широтах, где уровень инсоляции снижен, а также где климатические условия предполагают наличие большого количества туманных и пасмурных дней, приходится к фотоэлектрическим панелям добавлять не только аккумуляторы, но и электростанции другого типа – ветряные или гидроэлектростанции, которые подключаются к выработке электроэнергии (и/или тепловой энергии), когда уровень инсоляции в данной местности существенно снижает производительность гелиоэлектростанций.
Особенно широко в последнее время распространились фотоэлектрические панели, предназначенные для получения энергии в индивидуальных коттеджах и загородных домах. Они используются в сочетании с ветрогенераторами, что позволяет владельцам такой загородной недвижимости постоянно получать собственную электроэнергию и не зависеть от внешних поставщиков.
Потенциал солнечной энергетики России
Нет комментариев