Металл, из которого изготовлена древняя катана, имеет уникальную слоистую структуру. Существует несколько технологий получения высококачественной оружейной стали для катан.
Первый способ изготовления стали
Железную руду, богатую примесями вольфрама и молибдена, добывали из песка сатетсу. Полученное сырье пережигали, разрубали на крошки и опять пережигали. Этот процесс насыщал железо углеродом, превращая его в сталь-сырец — оросиганэ. Чтобы отделить качественную сталь от металла, ослабленного наличием шлаков, оросиганэ расковывали, охлаждали в воде и измельчали, легко выламывая зашлакованные куски. Большое значение имело качество воды, поэтому большинство кузниц размещались у горных рек и родников. Поскольку сталь-сырец была недостаточно однородной, ее ковали и сваривали несколько раз до тех пор, пока не получалась высококачественная чистая сталь.
Второй способ изготовления стали
Еще один метод получения стали появился в Маньчжурии и стал активно применяться японскими мастерами в конце XIV века. Заключался он в длительном плавлении железной руды в татара-печах. Процесс был трудоемким, дорогим, но эффективным: для получения 5 тонн выплавленного металла, называемого кера, требовалось несколько дней и не один десяток тонн угля. Почти половина керы — это сталь с 1,5-процентным содержанием углерода. Оставшаяся часть представляла собой конгломерат нескольких металлов, включая и чугун дзуку.
Прежде чем стать оружейной сталью, металлу предстояло пройти еще одно испытание, — испытание временем. Заготовку закапывали во влажную землю вблизи вулканов и гейзеров, и за несколько лет ржавчина выедала «слабые» части металла.
Обработка металла: снижение содержания углерода
Из полученной одним из указанных способом обогащенной углеродом стали делали заготовку для будущего клинка. При этом надо было снизить насыщение стали углеродом, поскольку его содержание более 0,8% делает металл твердым, но хрупким после закалки.
Углерод выжигали непосредственно из заготовки клинка поэтапно. Сырцовую сталь расковывали в пластину, охлаждали в воде и раскалывали. Полученные куски сортировали и выкладывали на лопатку из железа или сырцовой стали, фиксировали с помощью глины и проковывали при высокой температуре. Получившийся брусок складывали вдвое, надрубив поперек, сваривали, затем складывали еще раз вдвое, на этот раз надрубив вдоль и снова сваривали.
Таких циклов проводили несколько, до 15-ти. С каждым таким удвоением содержание углерода понижалось: после первого этапа на 0,3%, после каждого последующего — на 0,03%. Таким образом, можно было довольно точно уловить момент, когда уровень водорода в стали снижался до нужных 0,8%. Каким будет конечный состав стали, каждый мастер решал сам: кто-то предпочитал работать с прочным, но более мягким металлом, а кого-то интересовала твердость, даже если клинок при этом становился очень хрупким.
Каждый этап с удвоением добавлял новые слои заготовке. С математической точки зрения их должны быть миллионы, но поскольку в процессе сварки молекулы тончайших пластин смешивались, то в реальности слоев получалось несколько тысяч.
Техники различных оружейных школ
У каждой из более чем 1 800 оружейных школ были свои собственные секреты ковки клинков из полученной высококачественной стали. Но при этом каждый мастер следовал единому для всех правилу: лезвие длинного меча должно быть твердым, а остальные части — прочными, но более мягкими.
Большинство мастеров делали клинки трехслойными по схеме сан-май: твердое, но хрупкое остро отточенное лезвие окружено с двух сторон более мягкими вязкими обкладками из железа. Немного усовершенствованная технология подразумевала обертывание стального клинка железной «рубашкой» с трех сторон.
В знаменитой провинции Бидзен, признанной оружейным центром Японии, применяли совершенно противоположный технологический прием — кобуси. Мастера из Бидзена использовали железо для изготовления основы клинка, которую «обворачивали» оружейной сталью. Из сплошной части стальной «рубашки» отковывали лезвие клинка. При этом необходимо было знание особых способов закалки, которые обеспечили бы клинку высокую эластичность без потери твердости.
Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Нет комментариев