ИСТОЧНИКИ ЭНЕРГИИ.
В конечном счете вся энергия, которой мы можем распорядиться, приходит к нам от Солнца. В недрах нашего светила при температурах порядка миллионов кельвинов проходят реакции между атомными ядрами. Идет неуправляемый термоядерный синтез.
Человек научился осуществлять подобные реакции, сопровождающиеся баснословным выделением энергии в земных условиях. Это водородная бомба. Ведутся работы по созданию управляемого термоядерного синтеза, о котором у нас пойдет речь ниже.
Сейчас этими вводными фразами мы оправдываем то, что именно после разговора о строении ядер естественно перейти к беседе об источниках энергии на Земле.
В земных условиях мы можем добыть энергию тремя путями. Во-первых, извлечь ее за счет топлива — химического или ядерного. Для этой цели требуется создать цепную реакцию, в ходе которой происходило бы воссоединение или разрушение молекул или атомных ядер. Химическое топливо, имеющее пока что практическое значение, — это уголь, нефть, природный газ. Ядерное топливо — это уран и торий (разлом частиц) и легкие элементы — прежде всего водород (воссоединение частиц).
Второй путь — это превращение кинетической энергии в работу. Можно заставить производить работу водяные потоки. Гидроэнергия — «белый уголь» — становится важнейшим источником энергии, если заставить воду падать с большой высоты — построить плотину или использовать естественные водопады, такие, как Ниагарский. Этот же путь превращения энергии в работу заставляет вращаться крылья ветряных мельниц.
Мы увидим, что к воздушным потокам — «голубому углю» — надо отнестись со всей серьезностью. Ветряные мельницы возрождаются на новом техническом уровне и внесут заметную лепту в энергетическую кассу. К этой же категории источников энергии относится использование энергии приливных волн.
Законы термодинамики подсказывают нам и третье решение энергетической проблемы. В принципе всегда возможно построить двигатель, который использует разности температур. Как мы знаем, поток тепла, переходя от нагретого тела к холодному, может быть частично превращен в механическую работу. С разностями температуры мы встречаемся как в земной коре и в Мировом океане, так и в атмосфере. Углубляясь в земные недра, мы убедимся в том, что в любом месте земного шара наблюдается повышение температуры.
Все эти 3 возможности (еще раз повторим) возникают благодаря приходу на нашу планету излучения Солнца. Земля получает ничтожную долю энергии, которую несут солнечные лучи. Но и эта крошечная часть колоссальна, и ее хватит землянам не только на удовлетворение обыденных нужд, но и на осуществление самых фантастических проектов.
Но солнечную энергию можно использовать и непосредственно. Ведь мы научились превращать энергию излучения в электрический ток с помощью фотоэлементов. А получение электрического тока является наиболее важным путем использования энергии для практических целей.
Конечно, во многих случаях и внутренняя энергия вещества, и энергия движения водяных и воздушных потоков могут использоваться непосредственно, минуя стадию превращения в электрический ток. Но, пожалуй, во всех случаях, кроме движения самолетов и ракет, целесообразно получить от первичного источника электрическую энергию на электростанциях, а уж ее заставить служить нашим целям. Значение электрической энергии увеличится еще больше, когда мы научимся изготовлять легкие, маленькие и емкие аккумуляторы, которые заменят современные (тяжелые и малоемкие), стоящие в автомобилях.
Прежде чем перейти к конкретному обсуждению разных источников энергии, обратим внимание читателя еще раз на две важные классификации источников.
Прежде всего, важная граница раздела проходит между топливом и энергией Солнца, белого и голубого углей. В первом случае мы тратим безвозвратно запасы земных богатств. Что же касается Солнца, воздуха и воды, то они — даровые источники энергии. Даровые в том смысле, что использование их энергии не влечет за собой уменьшения каких бы то ни было земных ценностей. Работа ветряков не уменьшает количества воздуха на земном шаре, работа гидроэлектростанций не уменьшает глубины рек, не используются запасы земных веществ и при работе солнечных машин.
И еще одна проблема. Необходимо заботиться об охране окружающей нас флоры и фауны — это задача, важность которой невозможно переоценить. Сжигание топлива обладает не только тем недостатком, что обедняет Землю, оно еще вдобавок засоряет почву, воду и воздух огромным количеством вредных отбросов. И с гидроэлектростанциями в этом отношении дело обстоит не вполне благополучно. Изменение водного режима рек влияет на климат и губит существенную часть рыбного населения Земли.
Без всякого сомнения, оптимальным способом добычи энергии является прямое использование солнечного излучения.
После этих общих слов перейдем к более детальному обсуждению возможностей использования энергии в земных условиях и дадим читателю представление о числах, которые фигурируют в справочниках по энергетике.
Начнем с характеристики солнечной энергии. К границе атмосферы на каждый квадратный метр приходит энергия средней мощности около 1,4 кВт (если пересчитать эту величину для времени, равного 1 году, то получим около 1010 Дж энергии); такое количество тепла дают сотни килограммов угля. Сколько же тепла получает от Солнца весь земной шар? Подсчитав площадь Земли и учитывая неравномерное освещение солнечными лучами земной поверхности, получим около 1014 кВт. Это в 100 тысяч раз больше энергии, которую получают от всех источников энергии на Земле все фабрики, заводы, электростанции, автомобильные и самолетные моторы, короче — в 100 тысяч раз больше мощности энергии, потребляемой всем населением земного шара (порядка миллиарда киловатт).
До сего времени солнечная энергия используется совершенно незначительно. Рассуждали так: правда, подсчет наш дал огромную цифру, но ведь это количество энергии попадает во все места земной поверхности — и на склоны недоступных гор, и на поверхность океанов, занимающую бóльшую часть земной поверхности, и на пески безлюдных пустынь. Кроме того, совсем не так уж велико количество энергии, приходящейся на небольшую площадь. А ведь вряд ли целесообразно создавать приемники энергии, простирающиеся на квадратные километры. Наконец, заниматься превращением солнечной энергии в тепло имеет смысл в тех местностях, в которых много солнечных дней.
Энергетический голод и огромные успехи в производстве полупроводниковых фотоэлементов полностью изменили психологию энергетиков. Создано множество проектов и опытных установок, с помощью которых солнечные лучи фокусируются на тысячах (а в будущем — на миллионах и миллиардах) фотоэлементов. Техников не пугают пасмурные дни и поглощение лучей атмосферой. Нет сомнения, что прямому использованию солнечной энергии принадлежит большое будущее.
Так же точно изменилось наше отношение к голубому углю. Еще каких-нибудь двадцать лет назад говорилось: не будем возлагать больших надежд на ветер как источник энергии. Источник этот имеет тот же недостаток, что и солнечная энергия: количество энергии, приходящейся на единицу площади, относительно невелико; лопасти ветряной турбины, если создать такую для производства энергии в заводских масштабах, должны были бы достигнуть практически неосуществимых размеров. Не менее существенным недостатком является непостоянство силы ветра. Поэтому энергию ветра стоит использовать лишь в маленьких двигателях — «ветряках». Во время ветра они дают электроэнергию сельскохозяйственным машинам, освещают дома. Если образуется излишек энергии, он запасается в аккумуляторах. Эти излишки можно использовать в затишье. Конечно, полагаться на ветряк нельзя, — он может играть лишь роль вспомогательного двигателя.
Сегодня рассуждения инженеров, занятых проблемой борьбы с энергетическим голодом, совсем иные. Проекты электростанций, состоящих из тысяч регулярно расположенных «мельниц» с огромными крыльями, близки к осуществлению. Использование голубого, угля также внесет весомый вклад в книгу прихода энергии, нужной человечеству.
Даровым источником энергии является движущаяся вода — приливная волна океанов, непрерывно наступающая на сушу, и потоки речных вод, текущих к морям и океанам. Выработка электроэнергии на ГЭС в 1969 г. в СССР составила 115,2 млрд. кВт ч, в США — 253,3 млрд. кВт. ч, но водные ресурсы используются у нас только на 10,5 %, а в США на 37 %.
Приведенные цифры выработки электроэнергии на ГЭС весьма внушительны, но все-таки, если бы мы лишились угля, нефти и других источников энергии и перешли бы только на белый уголь — энергию рек, то пришлось бы уменьшить потребление энергии на земном шаре, даже сли бы на всех реках были построены все технически возможные гидроэлектростанции.
Ну, а приливная волна? Ее энергия весьма значительна, хотя примерно в десять раз меньше энергии рек. Увы, эта энергия пока что используется лишь в самой незначительной степени, пульсирующий характер приливов затрудняет ее использование. Однако советские и французские инженеры нашли практические пути к преодолению этой трудности. Теперь приливная электростанция обеспечивает выдачу гарантированной мощности в часы максимального потребления. Во Франции построена ПЭС на реке Ране, а в СССР — станция в Кислой Губе в районе Мурманска. Эта последняя послужит опытной моделью для сооружения проектируемых мощных (около 10 ГВт) приливных электростанций в заливах Белого моря.
Вода в океанах на больших глубинах имеет температуру, отличающуюся от температуры поверхностных слоев на 10–20 °C. Значит, можно построить тепловую машину, нагревателем которой в средних широтах явился бы верхний слой воды, а холодильником — глубинный. К.п.д. такой машины будет 1–2 %. Но это, конечно, тоже очень неконцентрированный источник энергии.
Комментарии 1