Основная статья: Эффект Сюняева — Зельдовича
Если фотоны реликтового фона на своём пути встречают горячий газ скоплений галактик, то в ходе рассеяния за счёт обратного эффекта Комптона фотоны будут разогреваться (то есть увеличат частоту), забирая часть энергии у горячих электронов. Наблюдательно это будет проявляться снижением потока реликтового излучения в направлении крупных скоплений галактик в длинноволновой области спектра.
С помощью этого эффекта можно получить информацию[49]:
о давлении горячего межгалактического газа в скоплении, а, возможно, и о самой массе скопления;
о скорости скопления вдоль луча зрения (из наблюдений на разных частотах);
о величине постоянной Хаббла H0, с привлечением наблюдений в гамма-диапазоне.
При достаточном количестве наблюдаемых скоплений можно определить и общую плотность Вселенной Ω.
Преимущество этого эффекта состоит в том, что его природа ясна и никак не зависит от космологического красного смещения.
Поляризация
Карта поляризации реликтового излучения по данным WMAP
Поляризация реликтового излучения могла возникнуть только в эпоху просветления. Так как рассеяние томпсоновское, то реликтовое излучение линейно поляризовано. Соответственно, параметры Стокса Q и U, характеризующие линейные параметры, отличны, а параметр V равен нулю. Если интенсивность можно разложить по скалярным гармоникам, то поляризацию можно разложить по так называемым спиновым гармоникам[48]:
Q+iU=\sum_{l,m}a_{lm}^{\pm2}Y_{lm}^{\pm2}(\theta, \phi)
Выделяются E-мода (градиентная составляющая) и B-мода (роторная составляющая)[50].
a_{lm}^E=\frac{1}{2}\left(a_{lm}^{+2}+a_{lm}^{-2}\right)
a_{lm}^B=\frac{1}{2}\left(a_{lm}^{+2}-a_{lm}^{-2}\right)
E-мода может появляться при прохождении излучения через неоднородную плазму вследствие томпсоновского рассеяния. B-мода, максимальная амплитуда которой достигает всего лишь 0,1 \mu K, возникает лишь при взаимодействии с гравитационными волнами.
B-мода является признаком инфляции Вселенной и определяется плотностью первичных гравитационных волн. Наблюдение B-моды является сложной задачей вследствие неизвестного уровня шума для этой компоненты реликтового излучения, а также за счёт того, что B-мода смешивается слабым гравитационным линзированием с более сильной E-модой[51].
На сегодняшний день поляризация обнаружена, её величина на уровне в несколько \mu K (микрокельвинов). Причем зарегистрирована только E-мода, B-мода не наблюдается.
Флуктуации реликтового фона
Флуктуации реликтового фона по данным NASA, основанным на наблюдениях на WMAP
Для сравнение с теоретическими данным сырые данные приводятся к вращательно-инвариантной величине[48]:
C_l=\frac{1}{2l+1}\sum_{l=-m}^{l=m}\left|a_{lm}\right|^2
«Спектр» же строят для величины l(l+1)Cl/2π, из которого получают важные для космологии выводы. К примеру, по положению первого пика можно судить о полной плотности Вселенной, а по его величине — содержание барионов.
Так из совпадения кросс-корреляции между анизотропией и E-модой поляризации с теоретическими предсказанными для малых углов (θ<5°) и значительного расхождения в области больших можно сделать о наличии эпохи рекомбинации на z≈15-20.
Так как флуктуации гауссовы, то можно использовать метод марковских цепей для построения поверхности максимального правдоподобия. В целом обработка данных по реликтовому фону это целый комплекс программ. Однако, как итоговый результат, так и используемые предположения и критерия вызывают дискуссию. Различными группами показано, отличие распределения флуктуаций от гаусового, зависимость карты распределений от алгоритмов его обработки[52][53][54].
Особенности наблюдений звёздных скоплений
Популяция белых карликов в шаровом звёздном скоплении NGC 6397. Синие квадраты — гелиевые белые карлики, фиолетовые кружки — «нормальные» белые карлики с высоким содержанием углерода.
Главное свойство шаровых скоплений для наблюдательной космологии — много звёзд одного возраста в небольшом пространстве. Это значит, что если каким-то способом измерено расстояние до одного члена скопления, то различие в расстоянии до других членов скопления пренебрежимо мало.
Одновременное формирование всех звёзд скопления позволяет определить его возраст: опираясь на теорию звёздной эволюции, строятся изохроны на диаграмме «цвет — звёздная величина», то есть кривые равного возраста для звёзд различной массы. Сопоставляя их с наблюдаемым распределением звёзд в скоплении, можно определить его возраст.
Метод имеет ряд своих трудностей. Пытаясь их решить, разные команды, в разное время получали разные возраста для самых старых скоплений, от ~8 млрд лет[55], до ~ 25 млрд лет[56].
В галактиках шаровые скопления, входящие в старую сферическую подсистему галактик, содержат множество белых карликов — остатков проэволюционировавших красных гигантов относительно небольшой массы. Белые карлики лишены собственных источников термоядерной энергии и излучают исключительно за счёт излучения запасов тепла. Белые карлики имеют приблизительно одинаковую массу звёзд-предшественниц, а значит — и приблизительно одинаковую зависимость температуры от времени. Определив по спектру белого карлика его абсолютную звёздную величину на данный момент и зная зависимость время—светимость при остывании, можно определить возраст карлика[57]
Однако данный подход связан как с большими техническими трудностями, — белые карлики крайне слабые объекты, — необходимо крайне чувствительные инструменты, чтоб их наблюдать. Первым и пока единственным телескопом, на котором возможно решение данной задачи является космический телескоп им. Хаббла. Возраст самого старого скопления по данным группы, работавшей с ним: 12,7\pm0,7 млрд лет[57], однако, результат оспаривается. Оппоненты указывают, что не были учтены дополнительные источники ошибок, их оценка 12,4^{+1,8}_{-1,5} млрд лет[58]. Разрешить спор возможно только на телескопах нового класса, которые лишь планируется ввести в строй.
Особенности наблюдений непроэволюционировавших объектов
NGC 1705 — галактика типа BCDG
Объекты, фактически состоящие из первичного вещества, дожили до нашего времени благодаря крайне малому темпу их внутренней эволюции. Это позволяет изучать первичный химический состав элементов, а также, не сильно вдаваясь в подробности и основываясь на лабораторных законах ядерной физики, оценить возраст подобных объектов, что даст нижний предел на возраст Вселенной в целом.
К такому типу можно отнести: звёзды малой массы с низкой металличностью (так называемые G-карлики), низкометалличные области HII, а также карликовые неправильные галактики класса BCDG (Blue Compact Dwarf Galaxy).
Согласно современным представлениям, в ходе первичного нуклеосинтеза должен был образоваться литий. Особенность это элемента заключается в том, что ядерные реакции с его участием начинаются при не очень больших, по космическим масштабам, температурах. И в ходе звездной эволюции изначальный литий должен был быть практически полностью переработан. Остаться он мог только у массивных звезд населения типа II. Такие звёзды имеют спокойную, не конвективную атмосферу, благодаря чему литий остаётся на поверхности, не рискуя сгореть в более горячих внутренних слоях звезды.
В ходе измерений, обнаружилось, что у большинства таких звезд обильность лития составляет[59]:
A(Li)=12+\log(Li/H)=2.12.
Однако есть ряд звезд, в том числе и сверхнизкометаличные, у которых обильность значительность ниже. с чем это связано до конца не ясно, предполагается, что это как-то связано с процессами в атмосфере[60].
У звезды CS31082-001, принадлежащей звёздному населению типа II, были обнаружены линии и измерены концентрации в атмосфере тория и урана. Эти два элемента имеют различный период полураспада, поэтому со временем их соотношение меняется, и если как-то оценить первоначальное соотношение обильностей, то можно определить возраст звезды. Оценить можно двояким способом: из теории r-процессов, подтверждённой как лабораторными измерениями, так и наблюдениями Солнца; или можно пересечь кривую изменения концентраций за счёт распада и кривую изменения содержания тория и урана в атмосферах молодых звёзд за счёт химической эволюции Галактики. Оба метода дали схожие результаты: 15,5±3,2[61] млрд лет получены первым способом, 14{,}5^{-2{,}8}_{+2{,}2}[62] млрд лет — вторым.
Слабо металличные BCDG-галактикам (всего их существует ~10) и зоны HII — источники информации по первичному обилию гелия. Для каждого объекта из его спектра определяется металличность (Z) и концентрация He (Y). Экстраполируя определённым образом диаграмму Y-Z до Z=0, получают оценку первичного гелия.
Итоговое значения Yp разнится от одной группы наблюдателей к другой и от одного периода наблюдений к другому. Так, одна, состоящая из авторитетнейших специалистов в этой области: Изотова и Тхуан (Thuan) получили значение Yp=0,245±0,004[63] по BCDG-галактикам, по HII — зонам на данный момент (2010) они остановились на значении Yp=0,2565±0,006[64]. Другая авторитетная группа во главе с Пеймберт (Peimbert) получали также различные значения Yp, от 0,228±0,007 до 0,251±0,006[65]
Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Нет комментариев