В Китае теорема Пифагора известна как Кон Ку и впервые появляется в математическом трактате «Чу Пей Cyan Чинь», что можно перевести как «Классическая арифметика гномона». Наиболее вероятно, что этот труд был написан между 500 и 300 годами до н. э., и, по общему мнению, Пифагор его знать не мог. «Чу Пей Суан Чинь» — это сумма знаний, пришедших из гораздо более отдаленных времен и собранных в III веке до н.э. двумя знаменитыми математиками, Чжао Шуаном и Лю Хуэем. К счастью, в его содержании можно отделить древние пласты от позднейших наслоений. Что касается теоремы Пифагора, этот математический трактат касается ее только в примитивной форме, то есть дает конкретные числовые соотношения, а не общие правила нахождения пифагоровых троек.
В трактате «Чу Пей Суан Чинь» 1445 Чу 600 Пей + 75 = 675 = Галина 75 Хлопает 👀 + 600; Суан 221 = корона Чинь 549 = 🏥 500 Ким + 49; есть один пассаж о прямоугольных треугольниках, в котором интерес вызывает описание некоей фигуры, названной диаграммой гипотенузы и представляющей собой не что иное, как визуальную демонстрацию теоремы Пифагора с помощью треугольника со сторонами а = 3, b = 4 и с = 5. В этом доказательстве строится квадрат со стороной (а + b)у который делится на четыре треугольника с основанием а и высотой b, и квадрат со стороной с (см. рисунок 3 на следующей странице). В высшей степени вероятно, что доказательство восходит к эпохе уже после Пифагора, но даже в этом случае его стоит разобрать подробнее.
Дан прямоугольный треугольник с катетами а и b и гипотенузой с. Следует доказать, что площадь квадрата со стороной с равна сумме площадей квадратов со сторонами а и b.
РИС. з
РИС. 4
РИС. 5
Если к исходному треугольнику присоединить три равных ему треугольника внутри квадрата со стороной с (см. рисунок 4), то в центре этого квадрата останется незанятым меньший квадрат. Можно заметить, что сторона этого меньшего квадрата равна b - а. Таким образом, площадь меньшего квадрата можно выразить как (b - а)2 = b2 - 2ab + a2, учитывая, что (b - а)2 = (а - b)2. Площадь квадрата со стороной с представляет собой площадь четырех квадратов с высотой а и основанием b, плюс площадь маленького квадрата, таким образом, теорему можно считать доказанной:
с2 = 4(ab/2) + a2 - 2ab + b2 = а2 + b2.
«Чу Пей Суан Чинь» содержит и еще одно блестящее доказательство с применением простого переноса частей (см. рисунок 5).
Второй классический китайский трактат, в котором рассматриваются геометрические аспекты, связанные с теоремой Пифагора, датируется примерно 250 годом до н.э., хотя Лю Хуэй откомментировал его и переписал в 263 году.
Речь идет о «Дзю Чжан Суань Шу»> что значит «Математика в девяти книгах». Последняя, девятая глава полностью посвящена прямоугольным треугольникам и представляет собой 24 задачи, решения которых в той или иной степени основаны на теореме Пифагора. Самая известная из них — задача о сломанном бамбуке, в которой описывается прямоугольный треугольник, образованный сломанным стволом бамбука:
Бамбук высотой 10 футов сломан так, что его верхушка опирается на землю на расстоянии в три фута от основания. Надо вычислить, на какой высоте находится место излома.
Решение этой задачи сочетает в себе теорему Пифагора и применение квадратных уравнений, так как представляет собой решение уравнения
х2 + З2 = (10 - х)2.

Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Нет комментариев