Свойства числовых неравенств
Свойство 1.
Если а>b и b> с, то а> с.
Доказательство. По условию, а > b, т. е. а — b — положительное число. Аналогично, так как b > с, делаем вывод, что b - с — положительное число.
Сложив положительные числа а - b и b - с, получим положительное число. Имеем (а - b) + (b - с) - а - с. Значит, а- с — положительное число, т. е. а > с, что и требовалось доказать.
Свойство 2.
Если а>b, то а + с>Ь + с.
Свойство 3.
Если а>b и m> О, то от > bm; если а>b и m < o, то am < bm.
Смысл свойства 3 заключается в следующем: если обе части неравенства умножить на одно и то же положительное число, то знак неравенства следует сохранить;
если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства следует изменить (< на >,> на< ).
Свойство 4.
Если а>b и c> d, то а + с > b + d.
Доказательство.
I способ. По условию, а > b и с > d, значит, а - b и с - d — положительные числа. Тогда и их сумма, т. е. (а - b) + (с - d) — положительное число. Так как (a-b) + (c-d) = (a + c)-(b + d), то и (а + с) - (b + d) — положительное число. Поэтому a + c>b + d.
II способ. Так как а > Ь, то, согласно свойству 2, а + с > b + с. Аналогично, так как с > d, то с + b > d + b.
Итак, а + с > b + с, b + с > b + d. Тогда, в силу свойства транзитивности, получаем, что а + с > b + d.
Свойство 5 означает, что при умножении неравенств одинакового смысла, у которых левые и правые части — положительные числа, получится неравенство того же смысла.
Свойство 6.
Если а и b — неотрицательные числа и а > b, то а^n > Ь^n, где n — любое натуральное число.
Смысл свойства 6 заключается в следующем: если обе части неравенства — неотрицательные числа, то их можно возвести в одну и ту же натуральную степень, сохранив знак неравенства.
#ЕГЭ2015 #ЕГЭ #математика
Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Нет комментариев