Российские исследователи выяснили, что скорость и эффективность работы так называемых генеративных потоковых сетей (GFlowNets), способных ускорять разработку новых лекарств и решать задачи комбинаторной оптимизации, можно значительным образом повысить, если применять для их настройки классические алгоритмы обучения с подкреплением. Об этом сообщила пресс-служба НИУ ВШЭ.
Как объясняют ученые, так называемые генеративные потоковые сети представляют собой особый класс методов машинного обучения, который используется при обучении языковых моделей, решении задач комбинаторной оптимизации, при моделировании молекул лекарств с заданными свойствами и для решения других сложных задач.
"Устройство этих моделей можно описать на примере конструктора лего. По недостроенному объекту и набору доступных деталей система будет пытаться предсказать, куда и с какой вероятностью нужно добавить деталь, чтобы мы могли с большой вероятностью собрать хороший макет машины или корабля", - пояснил научный сотрудник Института искусственного интеллекта и цифровых наук НИУ ВШЭ Никита Морозов, чьи слова приводит пресс-служба вуза.
Источник: https://nauka.tass.ru/nauka/21085841
Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Нет комментариев