Использование летательных аппаратов обусловлено одной важной деталью. Прежде чем достичь значений сверхзвуковых скоростей, самолёт требуется поднять в воздух, либо по окончании полёта опустить аппарат на землю[1]. Перед конструкторами встаёт сложная задача – создание универсальной формы тела, обладающей одинаково малыми сопротивлениями, как в дозвуковом диапазоне скоростей, так и в сверхзвуковом диапазоне скоростей. Современные сверхзвуковые летательные аппараты способны развивать скорость до нескольких тысяч км/час. Конструкторам самолётов удалось преодолеть звуковой барьер. Казалось бы, остаётся лишь наращивать значение скорости. Но на практике оказалось не всё так просто. Другая, не менее сложная задача – преодоление теплового барьера, отметилась серьёзным препятствием на пути.
В режиме движения реактивного самолёта или того же снаряда, воздух впереди любого из отмеченных объектов сжимается. Процесс сжатия сопровождается повышением температуры, что приводит к нагреву воздушных потоков, рассекаемых самолётом либо снарядом. Точке преодоления звукового барьера соответствует значение температуры в +60 °С[2]. Это не такое большое значение температуры, способное ограничить конструкторские действия. Но если скорость движения увеличивается вдвое относительно скорости движения в точке звукового барьера, значение температуры приближается уже к +250 °С. Увеличение скорости втрое приводит к нагреву воздушных потоков до 820 °С. Наконец, при скорости движения 10 км/с и более, практически любое тело начинает расплавляться, настолько высокой становится температура воздушных потоков. Простой пример – вхождение космического тела, такого как астероид или метеорит, в атмосферу Земли. Подобные космические объекты (относительно небольших размеров), как правило, движутся со скоростью более 10 км/с, и практически полностью сгорают в атмосфере по причине нагрева поверхности тела до уровня критической температуры.
А «звуковым барьером» в аэродинамике называют резкий скачок воздушного сопротивления, возникающий при достижении самолетом некоторой пограничной скорости, близкой к скорости звука. При достижении этой скорости характер обтекания самолета воздушным потоком меняется кардинальным образом, что в свое время сильно затрудняло достижение сверхзвуковых скоростей. Обычный, дозвуковой, самолет не способен устойчиво лететь быстрее звука, как бы его ни разгоняли, — он просто потеряет управление и развалится.
Для преодоления звукового барьера ученым пришлось разработать крыло со специальным аэродинамическим профилем и придумать другие ухищрения. Интересно, что пилот современного сверхзвукового самолета хорошо чувствует «преодоление» своим летательным аппаратом звукового барьера: при переходе на сверхзвуковое обтекание ощущается «аэродинамический удар» и характерные «скачки» в управляемости. Вот только с «хлопками» на земле эти процессы напрямую не связаны.
https://elementy.ru/email/1481540/Pochemu_preodolenie_samoletom_zvukovogo_barera_soprovozhdaetsya_vzryvopodobnym_khlopkom_I_chto_takoe_zvukovoy_barer331 м/с - 0.331 км/с
Нет комментариев