В этом докладе рассматриваются алгоритмические задачи, связанные с мин-плюс многочленами. Конкретнее — разрешимость систем линейных мин-плюс многочленов. Эта задача оказывается полиномиально эквивалентной задаче об определении победителя в так называемых циклических играх (mean payoff games), известной задаче, лежащей в пересечении сложностных классов NP и coNP. Второй результат, который обсуждается в ходе доклада, это аналог теоремы Гильберта о нулях для мин-плюс алгебры.
Мин-плюс (или тропическим) полукольцом называется множество рациональных чисел с двумя операциями: мин-плюс сложением, которая есть просто операция взятия минимума, и мин-плюс умножением, которое есть обычное сложение. Многочлены над мин-плюс полукольцом определяются по аналогии с классическими многочленами. По существу, мин-плюс многочлен задает кусочно-линейную функцию от своих переменных. Корнем многочлена называется точка негладкости этой функции.
Доклад был прочитан на факультете компьютерных наук, открытом в НИУ ВШЭ при поддержке Яндекса. Лектор Владимир Подольский — старший научный сотрудник Математического института им. В.А. Стеклова. На ФКН читает лекции и ведет семинары в рамках курса «Дискретная математика». Доклад основан на совместных работах с Дмитрием Григорьевым.
Под катом — полная расшифровка лекции.
Читать дальше →
Присоединяйтесь — мы покажем вам много интересного
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Комментарии 1
РАН, замаскированное под суицид.
(Документы в публикации)
https://ivannikovpv.livejournal.com/565.html