Обычно используется для экономии топлива и дополнительного разгона автоматических межпланетных станций при полётах к дальним планетам Солнечной системы. Наиболее выгодны гравитационные манёвры у планет-гигантов, но нередко используются манёвры у Венеры, Земли, Марса и даже Луны.
Физическая суть процесса.
Рассмотрим траекторию космического аппарата, пролетающего вблизи какого- нибудь большого небесного тела, например, Юпитера. В начальном приближении мы можем пренебречь действием на космический аппарат гравитационных сил от других небесных тел. В системе отсчёта, связанной с Юпитером, космический аппарат разгоняется, проходит точку с минимальным расстоянием до планеты, а потом замедляется. Общая траектория космического аппарата представляет собой гиперболу, причём скорости до и после манёвра совпадают — с точки зрения наблюдателя, находящегося на Юпитере, никакого приращения скорости КА не происходит, только изменение направления его движения.
Теперь посмотрим на ту же ситуацию в системе отсчёта, связанной с Солнцем. В этой системе отсчёта планета движется по орбите (в случае Юпитера, со скоростью более 13 км/с), поэтому скорость космического аппарата относительно Солнца может измениться. Юпитер увлекает КА за собой в своём движении по орбите, добавляя ему часть скорости своего орбитального движения. Чем больше масса планеты, тем бо́льшая часть скорости орбитального движения может быть передана КА. Именно поэтому гравитационные манёвры у Юпитера гораздо выгоднее, чем таковые у Марса, хотя скорость орбитального движения Марса почти вдвое выше, чем у Юпитера. Поскольку при этом происходит также и изменение направления движения КА, то модуль вектора приращения скорости может значительно превосходить орбитальную скорость движения планеты. Таким образом, без затрат топлива можно изменить кинетическую энергию космического аппарата. Фактически, следует говорить о перераспределении кинетической энергии движения планеты и космического аппарата. Насколько возрастает (убывает) кинетическая энергия аппарата, настолько же падает (возрастает) кинетическая энергия движения планеты по её орбите. Поскольку масса искусственного космического аппарата исчезающе мала в сравнении с массой планеты (даже Луны), то изменения параметров орбиты планеты при этом оказываются исчезающе малыми, и ими можно полностью пренебречь. Например, если аппарат массой 1000 кг получает в поле тяготения Луны изменение скорости своего движения на 1 км/с, то скорость движения Луны по орбите вокруг Земли изменится лишь на несколько миллиардных долей ангстрема в секунду (то есть несколько миллиардных долей поперечника атома водорода). Другие тела Солнечной системы на движение Луны влияют на несколько порядков сильнее.
Максимально возможные приращения скорости, км/с: Меркурий Венера Земля Луна Марс Юпитер Сатурн Уран Нептун Плутон 3,005 7,328 7,910 1,680 3,555 42,73 25,62 15,18 16,73 1,09
Присоединяйтесь к ОК, чтобы подписаться на группу и комментировать публикации.
Комментарии 7