Покорение природы человеком еще не закончилось. Во всяком случае, пока мы еще не захватили наномир и не установили в нем свои правила. Посмотрим, что это такое и какие возможности нам дает мир объектов, измеряемых нанометрами.
Что такое «нано»? Когда-то на слуху были достижения микроэлектроники. Сейчас мы перешли к новой эре нанотехнологий. Так что такое это «нано», которое то тут то там стали добавлять к привычным словам, придавая им новое современное звучание: нанороботы, наномашины, нанорадио и так далее? Приставка «нано-» применяется в Международной системе единиц (СИ). Ее используют для образования обозначений десятичных дольных единиц. Это одна миллиардная часть исходной единицы.
В данном случае мы говорим об объектах, чьи размеры определяются в нанометрах. Значит, один нанометр – это одна миллиардная часть метра. Для сравнения, микрон (он же микрометр, давший название микроэлектронике, а кроме того, микробиологии, микрохирургии и т. д.) – это одна миллионная часть метра.
Если взять для примера миллиметры (приставка «милли-» – одна тысячная), то в миллиметре 1 000 000 нанометров (нм) и, соответственно, 1 000 микрометров (мкм). Человеческий волос имеет толщину в среднем 0,05–0,07 мм, то есть 50 000–70 000 нм. Хотя диаметр волоса и можно записать в нанометрах, это еще далеко не наномир. Углубимся и посмотрим, что там есть уже сейчас.
Размеры бактерий составляют в среднем 0,5–5 мкм (500–5000 нм). Вирусы, одни из главных врагов бактерий, еще меньше. Средний диаметр большинства изученных вирусов составляет 20–300 нм (0,02–0,3 мкм). А вот спираль ДНК имеет диаметр уже 1,8–2,3 нм. Считается, что самый маленький атом – это атом гелия, его радиус 32 пм (0,032 нм), а самый большой – цезия 225 пм (0,255 нм). В целом, нанообъектом будет считаться такой объект, размер которого хотя бы в одном измерении находится в нанодиапазоне (1–100 нм).
Можно ли увидеть наномир?
Конечно, все, о чем говорится, хочется увидеть своими глазами. Ну хотя бы в окуляр оптического микроскопа. Можно ли заглянуть в наномир? Обычным способом, как мы наблюдаем, например, микробов, нельзя. Почему?
Потому что свет с некоторой долей условности можно назвать нановолнами. Длина волны фиолетового цвета, с которого начинается видимый диапазон, – 380–440 нм. Длина волны красного цвета – 620–740 нм. Длины волн видимого излучения составляют сотни нанометров. При этом разрешение обычных оптических микроскопов ограничивается дифракционным пределом Аббе примерно на уровне половины длины волны. Большинство интересующих нас объектов еще меньше.
Поэтому первым шагом на пути проникновения в наномир стало изобретение просвечивающего электронного микроскопа. Причем первый такой микроскоп был создан Максом Кноллем и Эрнстом Руска еще в 1931 году. В 1986 году за его изобретение была вручена Нобелевская премия по физике.
Принцип работы такой же, как и у обычного оптического микроскопа. Только вместо света на интересующий объект направляется поток электронов, который фокусируется магнитными линзами. Если оптический микроскоп давал увеличение примерно в тысячу раз, то электронный уже в миллионы раз. Но у него есть и свои недостатки. Во-первых, это необходимость получить для работы достаточно тонкие образцы материалов. Они должны быть прозрачны в электронном пучке, поэтому их толщина варьируется в пределах 20–200 нм. Во-вторых, это то, что образец под воздействием пучков электронов может разлагаться и приходить в негодность.
Другим вариантом микроскопа, использующего поток электронов, является сканирующий электронный микроскоп. Он не просвечивает образец, как предыдущий, а сканирует его пучком электронов. Это позволяет изучать более «толстые» образцы. Обработка анализируемого образца электронным пучком порождает вторичные и обратноотраженные электроны, видимое (катодолюминесценция) и рентгеновское излучения, которые улавливаются специальными детекторами. На основании полученных данных и формируется представление об объекте. Первые сканирующие электронные микроскопы появились в начале 1960-х годов.
Сканирующие зондовые микроскопы – относительно новый класс микроскопов, появившихся уже в 80-е годы. Уже упомянутая Нобелевская премия по физике 1986 года была разделена между изобретателем просвечивающего электронного микроскопа Эрнстом Руска и создателями сканирующего туннельного микроскопа Гердом Биннигом и Генрихом Рорером.
Сканирующие микроскопы позволяют скорее не рассмотреть, а «ощупать» рельеф поверхности образца. Полученные данные затем преобразуются в изображение. В отличие от сканирующего электронного микроскопа, зондовые используют для работы острую сканирующую иглу. Игла, острие которой имеет толщину всего несколько атомов, выступает в роли зонда, который подводится на минимальное расстояние к образцу – 0,1 нм. В ходе сканирования игла перемещается над поверхностью образца. Между иглой и поверхностью образца возникает туннельный ток, и его величина зависит от расстояния между ними. Изменения фиксируются, что позволяет на их основании построить карту высот – графическое изображение поверхности объекта.
Похожий принцип работы использует и другой микроскоп из класса сканирующих зондовых микроскопов – атомно-силовой. Здесь есть и игла-зонд, и аналогичный результат – графическое изображение рельефа поверхности. Но измеряется не величина тока, а силовое взаимодействие между поверхностью и зондом. В первую очередь подразумеваются силы Ван-дер-Ваальса, но также и упругие силы, капиллярные силы, силы адгезии и другие. В отличие от сканирующего туннельного микроскопа, который может применяться только для исследования металлов и полупроводников, атомно-силовой позволяет изучить и диэлектрики. Но это не единственное его преимущество. Он позволяет не только заглянуть в наномир, но и манипулировать атомами.
Комментарии 1