Рис. 1. Геологическое строение Луны, указаны радиусы внутренних оболочек и толщина коры. Выводы о том, что внутренности Луны устроены именно так, были сделаны по результатам обработки сейсмических данных, полученных экспедициями в рамках программы «Аполлон».
Средняя мощность лунной коры — около 50 километров. Поскольку значимой атмосферы у Луны нет, предполагается, что крупные метеориты могут пробивать ее кору насквозь, достигая мантии. Однако доказать или опровергнуть эту гипотезу до последнего времени было нельзя. Спектрометры, установленные на лунных орбитальных станциях, показывали наличие в некоторых кратерах предположительно мантийных минералов, содержащих магний и железо, но точно определить состав или хотя бы соотношения основных элементов в них не удавалось. Команда китайских ученых, обработав материалы, собранные луноходом «Юйту-2» в кратере Фон-Карман, установила, что в реголите кратера есть значительные количества низкокальциевого пироксена и оливина — минералов, типичных для мантии. Это подтверждает гипотезу о том, что некоторые из кратеров Луны являются «окнами» в лунную мантию.
Согласно существующим моделям эволюции планет, на ранних стадиях своего формирования Луна была очень горячей. Она была покрыта сплошным магматическим океаном, в котором постепенно произошла гравитационная дифференциация вещества: более легкие соединения поднялись к поверхности, а более тяжелые опустились к центру. По мере остывания этого океана образовались кора, мантия и ядро Луны. Эти геологические оболочки сильно отличаются по составу и свойствам друг от друга. Например, лунное ядро отчетливо видно при анализе распространения сейсмических волн через толщу Луны («лунотрясения» происходят регулярно из-за приливного воздействия со стороны Земли и падения метеоритов).
Несмотря на определенное сходство строения Земли и Луны, а также на то, что, по самой популярной версии, Луна образовалась примерно 4,6 млрд лет назад после столкновения Земли с другим довольно крупным космическим телом, лунная кора сильно отличается от земной.
Есть два типа земной коры: океаническая и континентальная. Океаническая кора постоянно обновляется: появляется в зонах срединно-океанических хребтов, а исчезает в зонах субдукции; самые древние образцы коры этого типа имеют возраст 340 млн лет. Для океанической коры характерно слоистое строение: сверху расположен осадочный слой, под ним — слой базальтов (это основной тип пород, слагающих океаническую кору), а снизу — слой плутонических пород. В составе континентальной коры тоже выделяют слои, но их, в первом приближении, два: под осадочными породами залегают в основном граниты и гнейсы, образующиеся в процессе метаморфизма и гранитного магматизма, также связанного с субдукцией. Древнейшему блоку континентальной коры примерно 4,1 млрд лет.
Как видно, большую роль в формировании обоих типов земной коры играют вода, участвующая в преобразовании минералов в земных недрах и ответственная за формирование осадочных пород, и субдукция. Но, по современным представлениям, субдукция началась лишь в архее — примерно через 500 млн лет после затвердевания поверхности Земли, которая тоже в начале своей истории была покрыта океаном магмы. Скорее всего, «первичная» земная кора — по сути, застывшая поверхность магматического океана — была по составу ближе к лунной коре, но от нее, увы, ничего не осталось.
Лунная кора сформировалась около 4,5 млрд лет назад в последнюю фазу кристаллизации магматического океана и состоит преимущественно из плагиоклазов, слагающих породы, называемые анортозитами. Плагиоклазы имеют сравнительно низкую плотность (~2,5 г/см^3) и всплывают к поверхности магматического океана, тогда как пироксены (~3,3 г/см^3) и оливины (3,2–4,5 г/см^3) тонут. Поэтому лунная кора состоит из плагиоклазовых пород, а мантия — из содержащих оливин и пироксен. Там, где эта первичная кора выступает на поверхность, находятся светлые части — лунные материки, а в районе лунных морей ее перекрывают излившиеся позже базальты. Механизм формирования базальтовых магм универсален и работает на Луне точно так же, как на Земле: они образуются при частичном плавлении пород, состоящих из оливинов и пироксенов (типичных пород земной мантии), и обнаружение их на Луне было прямым свидетельством в пользу наличия у нее мантии, состоящей именно из этих минералов. В целом, по существующим гипотезам и моделям, в лунной мантии должно быть много оливина, однако искать его оказалось сложно.
О породах, слагающих лунную кору, мы достаточно хорошо знаем благодаря материалам миссий «Аполлонов», «Лун» и ряда орбитальных станций, а вот точные данные о составе и строении лунной мантии практический отсутствуют. «Аполлоны» не доставили на Землю ни одного образца, похожего на мантийный, да и среди лунных метеоритов кандидаты также отсутствуют: ни оливинов, ни пироксенов найдено не было. Некоторую информацию о строении мантии удалось получить за счет обработки сейсмических данных, собранных астронавтами во время высадок, а также благодаря изучению геохимии лунных базальтов, однако они не позволяют ответить на главный вопрос: каков химический состав и пропорции слагающих лунную мантию минералов, хотя бы в верхней ее части?
Как уже было сказано выше, если опираться на данные лунных миссий, проводить аналогии со строением Земли и исходить из известных нам геологических закономерностей (таких как, например, ряд Боуэна — последовательность кристаллизации минералов из магмы), то можно уверенно утверждать, что в лунной мантии есть оливины и пироксены. Но каково их соотношение в разных зонах мантии, как меняется содержание магния и железа и какую роль играют другие минералы — еще только предстоит выяснить. Без этой информации, к сожалению, невозможно точно восстановить скорость формирования Луны, состав исходного материала и особенности происходивших на ней геологических процессов.
Для Земли ответы на эти вопросы были найдены двумя способами. Первый способ (и более простой со всех точек зрения) — изучение фрагментов мантии, ксенолитов, вынесенных на поверхность за счет вулканизма. Особенно хорошо подходят кимберлитовые трубки — подводящие каналы древних вулканов, корни которых уходят к основанию коры и иногда захватывают алмазы даже из нижней мантии. Второй способ — бурение. Как известно, ни Кольская сверхглубокая скважина(глубиной 12 262 м), ни немецкий проект KTB (9101 м) не достигли даже нижней части коры. Потенциально успешные проекты бурения более тонкой океанической коры или некоторых зон в Альпах (где мантийное вещество, предположительно, близко к поверхности) пока что находятся на стадии разработки.
Как ни странно, для Луны порядок сложности обратный. Полноценная геологическая кампания по поиску ксенолитов потребовала бы поистине астрономических усилий. А вот с прямым изучением мантии дела могут обстоять куда лучше. Предполагается, что крупные метеориты в прошлом могли пробивать тонкую лунную кору, достигая верхов мантии, благодаря чему вещество мантии может быть найдено на дне гигантских кратеров. Самой большой из них — бассейн Южный полюс — Эйткен. Его диаметр примерно равен 2500 км, а глубина достигает 8 км. Возраст кратера оценивается в 4,2–4,3 млрд лет. Он расположен на обратной стороне Луны и был детально изучен с помощью инструмента Moon Mineralogy Mapper (M3), установленного на индийской станции Чандраян-1. Инструмент М3 показал, что в районе этого кратера есть значительное количество минералов железа (рис. 2), однако их происхождение и геологическое положение были не ясны. Преимущественно это были пироксены, а оливин был точно обнаружен лишь в двух местах. На фоне того, что бассейн не был целиком покрыт излившимися базальтами, в которых много железа, а измеренное содержание этого элемента все же было значительно выше, чем на обычных лунных материках, наблюдаемая картина была озадачивающей и требующей дополнительных исследований.
Комментарии 2